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Abstract. The potential application of phyllometric

and fractal parameters for the objective quantitative

description of leaf morphology, combined with the

use of Back Propagation Neural Network (BPNN) for

data modelling, was evaluated to characterize and

identify 25 Camellia japonica L. accessions from an

Italian historical collection. Results show that the

construction of a BPNN based on phyllometric and

fractal analysis could be effectively and successfully

used to discriminate Camellia japonica genotypes

using simple dedicated instruments, such as a personal

computer and an easily available optical scanner.

Keywords: backpropagation neural network

(BPNN); Camellia; cluster analysis; cultivar identifi-

cation; fractal spectrum

Introduction

The need to preserve genetic variability has been

realized in crop field since a long time through the

development of germplasm conservation pro-

grammes and the establishment of gene banks.

On the contrary, the safeguard of varietal variabil-

ity has been only recently undertaken on orna-

mental species (Petrova 1996). Genetic erosion

assumes an alarming significance especially in

those species in which genetic improvement has

originated an extremely high number of cultivars,

with a consequent loss or oversight of the ancient

ancestors. Among these, Camellia japonica L.

(Theaceae) represents a bright example, totalling

currently about 30,000 cultivars. Camellia culti-

vation has a long history and the wide range of

flower forms (e.g. single, anemone, formal),

colours, and sizes is the result of many centuries

of selection for desirable characteristics, first in

China and Japan (Durrant 1982, Chang and

Bartholomew 1984), then in Europe. The intro-

duction of Camellia japonica L. in Italy is dated

about 1760 (Remotti 2002), but only during the

XIXth century this species reached a high produc-

tive importance, with the selection of brand new

cultivars (Corneo et al. 2000). In particular,

Florence and Lucca became important growing

areas, due both to their favourable ecological

conditions and the work of some breeders and

collectors such as Oscar Borrini and Filippo

Parlatore (Grilli 1881, 1883). Nowadays, the

Italian production, even if it covers a considerable

economic importance, is limited to the commer-

cialization of about 200 cultivars, mostly derived

Correspondence: Sergio Mugnai, Department of Horticulture, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy

e-mail: sergio.mugnai@unifi.it

Pl Syst Evol 270: 95–108 (2008)

DOI 10.1007/s00606-007-0601-7

Printed in The Netherlands

Plant Systematics
and Evolution



from Eastern Asian ones. A worrying phenomenon

that involves Italian old Camellia japonica culti-

vars is the loss of identity, due to frequent cases of

synonymy, homonymy and wrong naming (Re-

motti 2002), so the need of restoring the correct

names by the use of genetic and/or morphological

traits. Traditional diagnostic keys for naming taxa
based on morphological studies have long played a

fundamental role with regard to practical biolog-

ical identification. Bracketed or indented keys,

dichotomous or otherwise have the advantage that

they can easily be edited in a printed page, but have

also some disadvantages, including a high level of

diagnostic skill and the knowledge of specialised

terminology needed (Clark and Warwick 1998).

These traditional morphological methods for char-

acterization and assessment of genetic variability

are time consuming, often affected by the envi-

ronment and can be only easily used to distinguish

between different species. On the contrary, prob-

lems can arise at variety and clone levels because

the previous methods are mainly based on

subjective visual assessment, often unable to

detect small differences. Interesting perspectives

have been highlighted in cultivar discrimination by

the analysis of isoenzymes (Sánchez-Escribano

et al. 1999), chemical compounds of phenolic

nature having taxonomic value (Eder et al. 1994)

and nucleic acids, mostly DNA. Simple sequence

repeat polymorphism (SSRP), randomly amplified

polymorphic DNA (RAPD) (Zebrowska and Tyr-

ka 2003), inverse sequence-tagged repeat (ISTR),

microsatellite variability (Sefc et al. 2000), ampli-

fied fragment length polymorphism (AFLP) have

proven to be useful tools for characterization of

ornamental varieties (Lombard et al. 2001). For

example, in Camellia japonica L. the genetic

structure of a wild population was investigated

using microsatellite markers (Ueno et al. 2000,

2002). Moreover, there are phylogenetic studies

conducted in order to understand the relationships

inside the family of Theaceae using chloroplast

DNA sequence data (Prince and Parks 2001) or

isoenzymes (Parks et al. 1995), but none of them

had the aim and/or the capacity to discriminate

between cultivars of the same species. These

biomolecular techniques, though effective, are

resource and labour-intensive, and require a

skilled and experienced technical staff to be

effectively exploited. A new exciting perspective

in plant identification has been recently devel-

oped from a modern and powerful technique: the

use of artificial neural networks, or ANNs. An

ANN is an information processing paradigm

structured as biological nervous systems, such

as the brain, composed of a large number of

highly interconnected processing elements (like

neurons) working in unison to solve specific

problems. ANNs, like the human mind, learn by

examples. An ANN is configured for a specific

application, such as pattern recognition or data

classification, through a learning process. The

possibility of using artificial neural networks

based on morphological traits for plant identifi-

cation has been tested a few years ago (Clark and

Warwick 1998, Mancuso and Nicese 1999,

Mancuso et al. 1999, Clark 2004), while their

use in other areas of science and technology have

advanced knowledge (i.e. voice and handwriting

recognition, vibration analysis, diagnostic in

medicine, elemental particle identification in

physics). The most useful qualities of ANNs,

such as their skill and speed in recognizing

pattern and shapes (Hertz et al. 1991), have

barely been exploited in ornamental plants (Pan-

dolfi et al. 2006).

The aim of this research is the morphological

characterization of ancient Camellia cultivars

from a historical Italian collection (Villa Orsi,

near Lucca) by using quantitative morphological

(i.e. phyllometric) and fractal spectra traits orig-

inated from leaves image analysis, and their

discrimination by building a specific ANN for

data modelling.

Materials and methods

Plant material. Twenty-two old Camellia japonica
L. cultivars were selected in the historical garden of

Villa Orsi in Compito (Lucca, Italy). The complete list

of the accessions is showed in Table 1. From each

accession fully expanded and healthy leaves were

randomly collected in late spring according to

uniformity of appearance, growth habit and

exposure. The samples were chosen excluding the

non-representative and anomalous plants.
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Image acquisition and determination of
phyllometric parameters. An optical scanner

(CanoScan D660U), set at 300 · 300 dpi and

16 million colours, was used to acquire leaf images

(Fig. 1). Fourteen phyllometric parameters (Table 2)

were determined for each leaf image, previously

transformed in a 256 grey scale, using an image

analysis software (UTHSCSA Image Tool 3.0,

freeware at ddsdx.uthscsa.edu/dig/itdesc.html).

Fractal dimension and fractal spectrum. Fractal

parameters were determined through a fractal image

analysis software (HarFA, Harmonic and Fractal

Image Analyzer 4.9.1, freeware at www.fch.vutbr.cz/

lectures/imagesci). The leaf fractal spectrum was

obtained using the method previously described by

Mancuso (2002). Briefly, each leaf colour image was

split in three constituting colour channels (red, green

and blue); each channel was thresholded for a colour

value between 0 and 255 and the fractal dimension for

each colour value was then assessed using the box-

counting method. The implementation of these

methods has been described in details by Mancuso

et al. (1999b). After drawing the baseline (fractal

dimension = 1) which separates the fractal (>1) from

the non-fractal (<1) zone of the spectrum, five fractal

parameters (First X, Peak X, Last X, Peak Y and Total

Peak Area) for each channel were calculated (Fig. 2).

Figure 3 shows an example for the spectra of the three

colour channels (blue, green and red). According to

Mancuso et al. (2003), the green and red channels were

influenced by the phenotype, shifting their respective

spectra to the left or to the right according to the

different accessions, whereas the blue channel seemed

relatively unaffected. As a consequence, only the green

and the red channels were selected as informative for

the constitution of the neural network.

Construction of an ANN. The most suitable type

of network for plant identification is considered to be

the supervised backpropagation neural network

(Mancuso and Nicese 1999), which is a particular

kind of multilayer feed-forward network, or

multilayer perceptron (MLP). Briefly, a BPNN has a

layered structure, with its architectural layout

basically composed by some layers of neurons,

namely the input layer, one or more hidden layers

and the output layer. Each layer receives its input

from the previous layer or from the network input,

whereas the output of each neuron feeds the next layer

or the output of the network. Particular nodes were

also used to shift the neuron transfer function and to

improve the network performance, thanks to the

backpropagation of errors. As the backpropagation

of errors is well described in literature (Rumelhart

et al. 1986, Haykin 1999), only the final equations

used in this study for the correction of weights are

provided. The most frequently used adjustment of

weights is a simple gradient descent: in this case, each

weight adjusts by a small amount proportional to the

derivative of the error function (dE/dwij) with respect

to that weight, and in the opposite direction:

Dwij ¼ �e ðdE=dwijÞ ð1Þ

where Dwij is the adjustment of the weight wij

connecting the unit i of one layer with the unit j of

the following layer, while e is the learning rate usually

variable in the range between 0.001 and 1.0.

In the present study a strict gradient descent (Rumel-

hart and McClelland 1988) was used with the

introduction of an averaging term:

Dwij ðiteration nÞ¼�e ðdE=dwijÞ
þlDwij ðiteration n�1Þ

ð2Þ

where the coefficient l is referred as the momentum.

The RMS (root mean square) error between the

network response (X(P,K)) and the training targets

(T(P,K)) was computed after each iteration according to

the equation:

RMS error¼SQRTðRP;KððTðP;KÞ �XðP;KÞÞ2Þ=ðPT �KTÞÞ
ð3Þ

where P is the Pth input pattern and K is the Kth output

node. PT is the total number of patterns, and KT is the

total number of output nodes.

Table 1. List of Camellia japonica accessions from

Villa Orsi (Compito, Italy)

Camellia japonica accessions from Villa Orsi Garden

1 Alba Plena 12 Oscar Borrini

2 Bonardi 13 Paolina Maggi

3 Chandleri 14 Principessa

Baciocchi

4 Drouard Guillon 15 Prof. Giovanni

Santarelli

5 Giardino Santarelli 16 Punicaeflora

6 Giovanni Nencini 17 Roma Risorta

7 Ignea 18 Rubina

8 Il Gioiello 19 Rubra Simplex

9 Lavinia Maggi Rubra 20 Sacco Vera

10 Madame Pepin 21 San Dimas

11 Marmorata 22 Violacea

Superba
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The network was designed using a total of 24 inputs

signals (learning phase) represented by the phyllo-

metric and leaf fractal parameters, and 22 outputs

represented by the Camellia accessions (recognition

phase). In total, data from 1100 leaves (50 per each

cultivar) were used. From preliminary tests, 50 was

considered the minimum significant number of leaves

per each phase. To optimize the neural network

activity, the number of hidden neurons and the

number of iterations was modified. Concerning the

hidden layer, many factors such as learning scheme,

number of nodes of the output and the input, and

connections between them play an important role for

the determination of the best configuration (Zurada

and Malinowski 1994). In our case, minimum error

was reached with a network composed of 50 hidden

neurons, positioned on one level, with the hidden layer

activated by a logistic sigmoid activation function:

y ¼ 1

ð1þ e�xÞ ð4Þ

The learning phase was protracted until the RMS error

became less than 0.06, and the difference between the

RMS in two consecutive steps was <0.0001.

Fig. 1. Leaves images: 1 Alba plena, 2 Bonardi, 3 Chandleri, 4 Drouard Guillon, 5 Giardino Santarelli, 6
Giovanni Nencini, 7 Ignea, 8 Il Gioiello, 9 Lavinia Maggi rubra, 10 Madame Pepin, 11 Marmorata, 12 Rubina, 13
Oscar Borrini, 14 Paolina Maggi, 15 Principessa Baciocchi, 16 Prof. Giovanni Santarelli, 17 Punicaeflora, 18
Roma Risorta, 19 Rubra Simplex, 20 Sacco Vera, 21 San Dimas, 22 Violacea Superba
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Neural network outputs of the BPNN were used to

measure the dissimilarities or distances between

ecotypes when forming the clusters. Euclidean dis-

tances were calculated and a dendrogram was con-

structed based on the distance matrix data by applying

an unweighted pair group method with arithmetic

averages (UPGMA) cluster analysis.

Results

Learning and recognition phase. Two separate

groups of leaves from the whole collection were

preliminary created, one for the learning phase,

the latter for the prediction one, in order to test

the network capacity to create effective rules for

the characterization of each accession. The ANN

output by phyllometric and fractal parameters

inputs has been represented by a XY-graph for

each accessions, with the cultivar names on the x-

axis, whereas the y-axis is the output for the level

of similarity obtained comparing the leaves from

the learning phase and the leaves from the

recognition one. Each graph aims to show how

the ANN was able to discriminate the selected

accession in comparison with the others. The

level of similarity is expressed by a number that

ranges between 0 (false) and 1 (true). In an ideal

case, only one output class has the averaged

output signal equal to 1, while all the other

outputs have their value equal to 0. Obviously,

this is a theoretical result. Due to the natural

variation among leaves, the output of the

expected class tends to report a value close to

1, but less than 1, while the others should be close

to 0. Three different situations were observed in

the tested Camellia genotypes: a) complete
recognition, when the output graph shows one

evident peak in the expected class; b) failed
recognition, when the expected class peak value

is very low; c) partial recognition, when the

expected class evident peak was also associated

to other almost equal peaks, indicating a close

morphological similarity among two or more

accessions.

Table 2. Morphological parameters inputs measured

by the image analysis software

Parameter Definition

1 Area The area of the leaf

2 Perimeter The perimeter of the leaf

3 Major axis

length

The length of the longest line that

can be drawn trough the leaf

4 Minor axis

length

The length of the longest line that

can be drawn trough the leaf

perpendicular to the major axis

5 Roundness Computed as: (4 · p x area) /

perimeter2

6 Elongation The ratio of the length of the major

axis to the length of the minor

axis

7 Feret

diameter

The diameter of a circle having the

same area of the leaf

8 Compactness Computed as: sqrt (4 · area / p) /

major axis length

9 Integrated

density

Computed as the product of the

mean grey level and the number

of pixels in the image of the leaf

10 Min grey

level

Minimum grey level of the leaf

11 Mean grey

level

Mean grey level of the leaf

12 Median grey

level

Median grey level of the leaf

13 Mode grey

level

Mode grey level of the leaf

14 Max grey

level

Maximum grey level of the leaf

Fig. 2. Graphical representation of the five fractal

parameters calculated from each colour channel: first

X, peak X, last X, peak Y and total peak area
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A clear example of complete recognition is

shown in Fig. 4, where ‘Alba Plena’ and ‘Drou-

ard Guillon’ genotypes reached the highest

output only in the expected class, with averaged

values around 0.45 and 0.6, respectively, whereas

the other classes had negligible output values.

‘Bonardi’, ‘Giardino Santarelli’, ‘Giovanni Nen-

cini’, ‘Ignea’, ‘Lavinia Maggi Rubra’, ‘Marmo-

rata’, ‘Oscar Borrini’, ‘Paolina Maggi’,

‘Principessa Baciocchi’, ‘Prof. Giovanni Santar-

elli’, ‘Rubra Simplex’, ‘Sacco Vera’ and ‘San

Dimas’ cultivars were also completely and univ-

ocally recognized by the network, as no evident

peaks of similarity with other tested cultivars

were noticed (data not reported). On the contrary,

Fig. 5 shows a failed recognition example: the

very low output values of the expected classes for

‘Il Gioiello’ and ‘Madame Pepin’ were not

suitable for an effective genotype identification

(failed recognition). In other cases, the ANN was

partially able to discriminate among two acces-

sions (partial recognition), without an univocal

response. For example, the expected class for

‘Chandleri’ had the same output value of an

unexpected class, ‘Rubina’, and vice versa

(Fig. 6). This result is probably derived from a

morphological similarity between the two acces-

sions that may correspond to a genotypic simi-

larity. Other partial recognitions were detected

for ‘Roma risorta’ (confounded with ‘Lavinia

Maggi Rubra’) and ‘Violacea Superba’ (con-

founded with ‘Giardino Santarelli). In the last

two cases, no inverse partial recognition was

detected, as noticed for the previous two culti-

vars. Resuming the results, a successful identifi-

cation was observed in 15 classes, a partial

identification in 4 classes, while no identification

in 3 classes (Table 3).

Prediction phase. Ten leaves from the same

accessions were processed later as previously

described and introduced to the network as

‘unknown leaves’ in order to check the validity

of our network at a different time since its

creation. The introduction of data from some

unknown leaves to the network was used to onset

a newly created output in order to match the

similarity between the unknown leaves and the

corresponding leaves used for the learning phase.

As expected, the BPNN was able to associate the

‘unknown leaves’ to the correspondent

genotypes, except for a few cases. For example

‘Drouard Guillon’ reached the highest output

only in the expected class, with the averaged

value around 0.45, whereas the other classes had

negligible output ones (Fig. 7a) while the

network was not able to clearly and completely

identify the unknown leaves of ‘Principessa

Baciocchi’ (Fig. 7b), even though the cultivar

was completely and univocally recognized in the

previous recognition phase. The graph shows

some small but not significant peaks, distributed

among five accessions, such as ‘Alba Plena’,

‘Drouard Guillon’, ‘Ignea’, ‘Principessa

Baciocchi’ and ‘Rubina’. In this case the

network was not able to correctly collocate the

group of leaves collected in a different period of

the year: probably, the unknown leaves were

significantly different from those used in the

training phase. Figure 8 shows the prediction test

result on ‘Chandleri’ genotype previously

described in Fig. 6: again, the network

associated to ‘Rubina’ some unknown leaves

Fig. 3. Fractal spectra of the red, green and blue channels of a single leaf for each camelia accession
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Fig. 4. Examples of a complete recognition by the BPNN. Each frame shows the BPNN output for the input

represented by the phyllometric and fractal parameters of 40 leaves. Reported lines show the averaged output

data
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Fig. 5. Examples of a failed recognition by the BPNN. Each frame shows the BPNN output for the input

represented by the phyllometric and fractal parameters of 40 leaves. Reported lines show the averaged output

data
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Fig. 6. Examples of a partial recognition by the BPNN. Each frame shows the BPNN output for the input

represented by the phyllometric and fractal parameters of 40 leaves. Reported lines show the averaged output

data
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collected from ‘Chandleri’, reiterating the

previous error.

Cluster analysis. The BPNN outputs have

been analyzed using cluster analysis to deeply

understand the similarities among the tested

phenotypes. This kind of analysis is a useful

tool for grouping objects of similar kind into

respective categories, as all the similarities and

dissimilarities are evaluated, in a way that the

degree of association between two objects is

maximal if they belong to the same group and

minimal otherwise. The UPGMA cluster analysis

of the distance matrix (Fig. 9) separated the

Camellia japonica accessions into different

groups, plus one isolated accession (‘Alba

Plena’). The clusters represent the groups of

similar accessions. For example, ‘Lavinia Maggi

Rubra’ together with ‘Roma Risorta’ and ‘Il

Gioiello’ together with ‘Madame Pepin’ had very

close connections, showing their high level of

similarity and the possibility to have a strong

genetic linkage. More, ‘Chandleri’, ‘Rubina’,

‘Ignea’ and ‘Marmorata’ are all grouped in the

same cluster due to their morphological

characteristics confirming the previously

described neural network results.

Discussion

Results herein reported demonstrate that a back-

propagation neural network (BPNN) can be used

to effectively differentiate Camellia japonica L.

cultivars through phyllometric and fractal param-

eters, as the majority of the tested genotypes

were univocally discriminated during the recog-

nition phase. Similar positive results have been

previously obtained in olive by Mancuso and

Nicese (1999), in chestnut by Mancuso et al.

(1999) and in grapevine by Mancuso (1999a,

2002). Much of the botanical identification is still

carried out using taxonomic keys, which is a

classical paper-based kind of expert system. The

success and accuracy of this identification relies

heavily on the experience and the interpretation

of the user, as traditional discrimination methods

based on morphological studies are mainly based

on subjective visual assessment, which is often

unable to detect small differences as those among

cultivars. In our case, the cultivar discrimination

of Camellia japonica L. based on these methods

such as leaf attributes determination can not lead

to satisfactory results as most of the tested

genotypes show very similar leaf dimensions and

shapes (Fig. 1). On the contrary, the building of

an artificial neural network based on morpho-

metric and fractal leaf parameters successfully

led to an effective genotype recognition, even

though particular care must be directed to the

choice of the leaves, which must be healthy and

well-developed. For example, the probable

reason to explain the no-recognition situations

was that the high variability in the leaf shape

inside these cultivars did not permit the creation

of certain rules for their univocal characteriza-

tion. The study of the fractal spectrum has been

recently used as useful tool to assess the

hardiness and cold tolerance of ornamental plants

such as Callistemon and Grevillea spp. (Mancuso

et al. 2003, 2004) but, to our knowledge, this is

the first attempt to successfully introduce leaf

fractal parameters as a botanical identification

key to be inserted in an artificial neural network

at the input layer. Our BPNN is also a powerful

tool in order to detect close similarities among

the genotypes. The case of ‘Chandleri’ and

Table 3. Total, partial, or failed recognitions ob-

tained by the BPNN

Complete

recognition

Partial

recognition

Alba Plena Chandleri

Bonardi Rubina

Drouard Guillon Roma Risorta

Giardino Santarelli Violacea Superba

Giovanni Nencini

Ignea

Lavinia Maggi Rubra

Marmorata Failed recognition
Oscar Borrini

Paolina Maggi Il Gioiello

Principessa Baciocchi Madame Pepin

Prof. Giovanni Santarelli Punicaeflora

Rubra Simplex

Sacco Vera

San Dimas
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‘Rubina’ is a good example (Fig. 6). The two

accessions seem to be phenotypically very close,

with a likely common ancestor: in fact, looking

to their flower characteristics, both have Anem-

one-form red flowers even though their selection

was conducted in two different locations.

Fig. 7. Prediction phase output for ‘Drouard Guillon’ and ‘Principessa Baciocchi’
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Fig. 9. The UPGMA cluster analysis of Camellia japonica accessions

Fig. 8. Prediction phase output for ‘Chandleri’
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‘Chandleri’ has been selected in 1919 by Chan-

dler in the nurseries of Vauxall, while ‘Rubina’

was selected in New York by Harrison and

introduced in Europe in 1839. Another hypoth-

esis about their high level of similarity lead to an

inversion of their names during the past years.

The old collection of ornamentals often suffers

from homonymy and synonymy, resulting in an

uncertain classification; to overcome this prob-

lem, the addition of more inputs to the network

could be considered. For example, an useful

parameter for the discrimination between ‘Lavi-

nia Maggi Rubra’ and ‘Roma Risorta’ could be

represented by the flower colour and/or form, as

‘Lavinia Maggi Rubra’ has red flowers, while in

‘Roma Risorta’ the flowers are pink-striped

white. Though useful, this choice contains a

negative aspect: the need to collect the plant

material during the blooming, so reducing to one

month the useful working time for Camellia
japonica L. The kind of network needed should

be assessed during the preliminary planning

phase: a network exclusively based on leaf

(phylllometric and fractal) parameters to be

effectively used all over the year as Camellia
japonica is an evergreen, or a more detailed and

informative network with a greater number of

parameters, but not available in any period of the

year. The results obtained in this research show

that backpropagation neural networks could be

effectively used to discriminate Camellia japon-
ica cultivars through the use of phyllometric and

fractal parameters. Although further research is

still necessary, these are of potential use in

herbaria and museums, or even in the field, using

simple dedicated instruments, such as a personal

computer and an easily available optical scanner.

Though one of the acknowledged advantages of

the BPNN is the capability to overcome the need

for a statistically representative sample of a

population, for a real practicable system the

changes in morphology caused by the environ-

ment should be taken into consideration and

can’t be excluded. As a matter of fact, further

research should be addressed to assess the

stability of the BPNN with camellia samples

coming from very different environments.
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material, and Dr. Cattolica and Mr. Lippi (Centro

Culturale Compitese, Compito, Italy) for their tech-
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