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Abstract
Osmotic-driven plant movements are widely recognized as impressive examples of energy
efficiency and low power consumption. These aspects motivate the interest in developing an
original biomimetic concept of new actuators based on the osmotic principle exploited by
plants. This study takes a preliminary step in this direction, by modelling the dynamic
behaviour of two exemplificative yet relevant implementations of an osmotic actuator concept.
In more detail, the considered implementations differ from each other in the way actuation
energy storage is achieved (through a piston displacement in the former case, through
membrane bulging in the latter). The dynamic problem is analytically solved for both cases;
scaling laws for the actuation figures of merit (namely characteristic time, maximum force,
maximum power, power density, cumulated work and energy density) as a function of model
parameters are obtained for the bulging implementation. Starting from such performance
indicators, a preliminary dimensioning of the envisaged osmotic actuator is exemplified, based
on design targets/constraints (such as characteristic time and/or maximum force). Moreover,
model assumptions and limitations are discussed towards effective prototypical development
and experimental testing. Nonetheless, this study takes the first step towards the design of new
actuators based on the natural osmotic principle, which holds potential for disruptive
innovation in many fields, including biorobotics and ICT solutions.

(Some figures may appear in colour only in the online journal)

1. Introduction

Most plants appear to lack the contractile proteins used in the
energy demanding processes for movement found in animals
(Dumais and Forterre 2012). Although plants lack muscles and
are typically considered stationary, they generate a diversity
of non-muscular movements that allow them, for example, to
efficiently explore the environment, looking for nutrients and
avoiding possible dangers, or to spread around their genetic

material, ensuring species continuity and diversification. These
kinds of movements present many appealing characteristics:
remarkable energy efficiency (gained during the evolution
process over almost half a billion of years), high actuation force
and a rich motion repertoire (a successful strategy supporting
survival in different and challenging conditions). Driven by
these considerations, since the pioneering work of the Darwins
(Darwin 1875, Darwin and Darwin 1880), the question of how
plants move in the absence of muscles has attracted the interest
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of many scientists (Jost and Gibson 1907, Ruhland 1959,
Hart 1990). From a biological perspective, the physiology
of plant movements is central to the understanding of plant
development and plant responses to environmental stimuli
such as light and gravity (Gilroy and Masson 2008, Moulia and
Fournier 2009). Moreover, suitable comprehension of these
non-muscular movements holds potential for developments
in applied sciences and engineering as well, in particular, in
view of the creation of novel biomimetic actuation strategies,
characterized by high energy efficiency and low power
consumption (Taya 2003, Burgert and Fratzl 2009, Martone
et al 2010).

Plant movements can be mainly classified into two main
categories, namely active and passive movements, depending
on the associated generation mechanisms (Hill and Findlay
1981). In particular, active systems are based on living
cells that activate and control the response by moving ions
and changing the permeability of membranes on the base
of action potentials (Simons 1981, Sibaoka 1991, Fromm
and Lautner 2007, Moran 2007, Uehlein and Kaldenhoff
2008). Conversely, passive systems are mostly based on dead
tissues that are suitably structured to undergo predetermined
modifications upon changes under environmental conditions
(Fahn and Werker 1972, Burgert and Fratzl 2009).

Within the active movements category, nastic movements,
defined as non-directional responses to stimuli, offer surprising
performances in terms of both speed and active pressure. A
few illuminating examples include the rapid (∼50 ms) closure
of Dionaea muscipula (Venus flytrap), partly actuated by an
abrupt decrease of internal tissue pressure (Forterre et al 2005,
Burgert and Fratzl 2009); the leaf closure by touch stimuli
in Mimosa pudica, that occurs within 20 ms from when they
are touched (Oda and Abe 1972); the Stylidium impressive
pollination mechanism, where Gynostaemium flips rapidly
(∼25 ms) to hit and pollinate insects (Hill and Findlay 1981);
and the remarkable 4.5 MPa actuation pressure exhibited
by stomatal guard cells during the closing phase, aimed at
containing water loss (Hill and Findlay 1981, Roelfsema and
Hedrich 2002).

While predation, self-defence, reproduction and water
retention can justify the use of the aforementioned motion
strategies, the efficient exploration of the environment and the
search for nutrients are fundamental for plant survival. Indeed,
soil penetration represents an outstanding adaptive reply to
the quest for resources: plant roots are able to autonomously
and efficiently move, surrounded by the soil, and to modify
their behaviour based on the environment characteristics. In
particular, roots are able to also penetrate strong mechanical
impedance media, by continuously exerting a pressure on
the order of 1 MPa, while elongating over lengths up to
10 m (Popova et al 2012, Green et al 1971, Zhu and Boyer
1992). Such a penetration task is energy demanding, yet it
can be accomplished by plant roots more efficiently than by
muscle-driven drilling systems, by virtue of their turgor-based
actuation strategy.

Turgor pressure (P) can be regarded as a sort of ‘natural
hardness’ generated by the water flux into the roots’ cells
along the water potential gradient sustained by the osmotic

pressure difference. Quantitatively speaking, turgor pressure
can be described by the relation P = πo − πi, where πi is the
osmotic potential inside the cell and πo represents the osmotic
potential outside the cell (Bengough et al 1997). This equation
assumes that water influx into the cell is not upper-bounded,
there is no transpiration tension and solutes have a reflection
coefficient near unity (Pritchard 1994).

From a functional viewpoint, natural osmotic systems
rely on four main elements: an osmotic membrane, a rigid
structure, a compliant transducer and a suitable osmotic power
reservoir. The stiff plant cell, made of highly organized
cellulose microfibrils embedded in a pectin matrix bears the
main responsibility for osmotic pressure formation in plant
roots (Preston 1974, Taiz and Zeiger 2002, Baskin 2005). From
a biomechanical viewpoint, this complex polymeric system,
without considering any active transport and gate proteins,
plays a twofold function

- it constitutes the most part of the natural osmotic
membrane (exhibiting good solute rejection properties
and good water permeability); and

- it acts as a first level transducer for actuation power
through its pressure-driven deformation (Dumais and
Forterre 2012).

Furthermore, cell deformation under osmotic potential is
mainly isotropic; nonetheless, directional actuation can be
obtained through the mediation of additional stiff elements
(e.g. lignin rich structure, dead tissue), of metastable structures
or by means of specific biochemical mechanisms (e.g. auxin
mechanism, special osmotic metabolism, osmotic agent active
transport) (Dumais and Forterre 2012). Clearly, in such
a framework, an osmotic power reservoir is successfully
provided by soil presence and cell proximity (Steudle and
Peterson 1998).

As anticipated above, plant roots greatly exploit passive
osmosis, in which osmotic pressure is generated by solvent
flux across a semi-permeable membrane (i.e. cell wall), from
a region of higher solvent chemical potential (i.e. lower solute
concentration) to a region of lower solvent chemical potential
(i.e. higher solute concentration). The basic principles of the
osmotic process are known from fundamental physics. In
particular, solvent transport across the membrane is inhibited
by applying a pressure directly opposing the osmotic one to the
volume of the most concentrated solution. Moreover, classic
thermodynamics describes the osmotic pressure difference
� for a completely dissociated electrolyte in solution at
equilibrium as � = iRT log (1 − x) /Vm, where i is the number
of ions for formula unit, R is the universal gas constant
(R = 8.314 J K−1 mol−1), T denotes absolute temperature,
x is the solute molar fraction difference between the chamber
solutions andVm represents the solvent molar volume. For ideal
solutions, the aforementioned relation simplifies to (Atkins
1994)

� = iRT M, (1)

also known as the van’t Hoff formula, where M denotes
the molarity concentration difference between the chamber
solutions.
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A number of technological approaches has been proposed
in order to control the osmotic process by means of additional
physical mechanisms, such as, for instance, those related to
water desalination (Cath et al 2006) and power generation
(Skilhagen et al 2008) or in electro-osmotic applications
(Andersson and van den Berg 2003, Piyasena et al 2009).
Among them, relevant studies also addressed actuation (Wang
et al 2012), and the development of mechatronic systems
based on such an actuation (Mazzolai et al 2011). However,
technical complexity usually related to the implementation
of effective actuation systems motivates the development of
actuation strategies that only rely on the osmotic process
per se. As regards to our knowledge, only a few relevant
background references can be found in the literature. One
work dates back to the early 1970s and it is now recognized
as the basic principle of macroscale osmotic pumps for drug
delivery (Theeuewes and Yum 1976); it mainly addressed
the transduction of osmotic pressure potential into squeezing
movements. Another example was recently proposed (Su et al
2002), and concerns an osmotic actuator for osteogenesis
controlled distraction and drug release (Li and Su 2010).
Both the aforementioned systems are mainly passively
controlled, based on the main characteristics of their working
environment, and this aspect poses some limitations on the
achievable actuation performance. Nevertheless, despite the
complexity related to its development, an osmosis-based
actuation system could outperform traditional solutions, being
characterized by low power consumption, high actuation force
and architectural features suitable to exploit favourable scale
effects, similar to phenomena observed in Nature.

In this work, we get inspiration from plants and we
investigate the osmotic principle with the aim of bringing
new insights for innovative, energy efficient and low power
actuation solutions. With such an objective in mind, in
section 2 we introduce an osmotic actuator concept, together
with a simple model able to describe its dynamics. In
more detail, we consider two exemplificative yet relevant
implementations, which only differ from each other in the way
actuation energy storage is achieved. We analytically solve
the dynamic problem for both cases, yet we only elaborate
on the latter one (involving membrane bulging), by virtue
of its potential for effective prototypical development and
experimental testing. Relevant derivations for such a model are
reported in the appendix, for ease of readability, together with
the expression of the main actuation performance indicators.
Then, in section 3, we use the model in order to outline
some basic design considerations. In particular, a preliminary
dimensioning of the envisaged osmotic actuator is exemplified,
based on design targets/constraints (such as characteristic
time and/or maximum force). Main take home messages are
also highlighted. Finally, concluding remarks are reported in
section 4.

2. Materials and methods

A basic model is introduced in the present section, aimed
at analysing the relevant features of the envisaged osmotic

Figure 1. Schematic of the osmotic actuator concept showing the
reservoir chamber (RC), the actuation chamber (AC) and the
osmotic membrane (OM). The displaceable portion of the AC
boundary is introduced for storing/gathering the energy associated
with the osmotic process. Solvent flux q̇ is also sketched.

actuation concept, in view of specific design configurations to
be studied after such a conceptual, icebreaking phase.

At this stage we represent the actuator as the two-
chamber system shown in figure 1: the solvent contained within
the reservoir chamber (RC) can flow towards the actuation
chamber (AC), also containing solute, through the osmotic
membrane (OM). The AC represents the main working domain
in the present model: we assume that, at the initial time t0 = 0,
its volume V0 contains a number n of solute moles so that
a corresponding molar concentration M0 = n/V0 contributes
as an osmotic flux driver at t0. Moreover, some degree of
approximation is introduced for ease of presentation, namely:

- (h0) solvent flux occurs through the whole OM surface
during the considered observation time;

- (h1) the OM perfectly allows for solvent transport while
being impermeable to solute flux;

- (h2) the OM characteristics do not change over the
considered observation time;

- (h3) surface effects close to the OM play a minor role
so that bulk solute concentration mainly contributes as
osmotic flux driver;

- (h4) OM deformation during the observation time is
negligible;

- (h5) solvent compressibility can be neglected.

Clearly, assumption (h0) does not weaken model generality
(RC being conceived as a reservoir). Furthermore, (h5)
is readily motivated by the fact that—for practical
implementations—the energy associated with the osmotic
actuation process is mainly stored/gathered through the
displacement/deformation of a portion Sw of the AC boundary
(see figure 1 and subsections below), whose compliance can be
assumed much greater than that of the working solvent (water
could be assumed in this regard to fix ideas). The remaining
simplifying assumptions are discussed in section 3.

Under the above assumptions, solvent flux q̇ across the
OM is simply given by (Cath et al 2006)

q̇ = SOMαOM(� + pRC − p), (2)

where SOM and αOM respectively denote the surface area and
the permeability of the OM; pRC and p denote pressure within
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RC and AC, respectively; and � indicates the osmotic pressure
difference between AC and RC.

Without major losses of generality, we can assume pRC
∼=

pext, where pext denotes the external environment pressure.
Moreover, once the volume V = V (t) of the AC at time t
is introduced (explicit dependence on t is hereafter dropped,
for ease of conciseness), it is straightforward to describe
its time variation as dV/dt = q̇, and to update the AC
molar concentration as M = n/V = M0V0/V . Hence, by
recalling equation (1), the osmotic pressure difference is given
by � = �0V0/V (the van’t Hoff approximation surely fits
the present modelling framework). Moreover, equation (2)
straightforwardly leads to the following ordinary differential
equation:

dV

dt
= SOMαOM

[
�0

V0

V
+ pext − p

]
, (3)

which describes the AC volume variation starting from
V (0) = V0.

An additional relation linking pressure p to volume V
is needed in order to determine the actuation dynamics.
Such a relation clearly depends on the specific mechanism
introduced within the AC for storing/transferring the osmotic
actuation work through the displacement/deformation of Sw.
In a practical implementation, such an element must be
able to transfer (at least part of) the work produced by
the osmotic process to a movable structure, which is in
turn capable of performing actuation on the environment.
However, in this study it is suitable to consider a
displacement/deformation of Sw leading to a non-dissipative
energy storage mechanism. Indeed, besides allowing for some
degree of generality (through the independence from specific
load conditions), such a position also permits us to easily
exploit the displacement/deformation of Sw for measuring
some performance metrics, as discussed below. In particular,
two relevant, though exemplificative, implementations of the
osmotic actuator concept are respectively discussed in sections
2.1 and 2.2, which are characterized by two different ways of
achieving storage of the osmotic actuation work. We present
analytical solutions for both implementations, yet we only
elaborate on the latter, in the light of its potential for effective
prototypical development and experimental testing.

Before focusing on model development, it is worth
remarking that the key elements defining the envisaged
osmotic actuation concept are four: the OM, the rigid structure
of the AC, the deformable part of the AC (here presented
as an energy storage element, yet to be also considered as a
force transducer) and the osmotic potential reservoir (granted
by the presence of the RC in combination with the initial
osmotic pressure difference). It should be noted that these
very elements also come into play when considering osmotic
actuation in plant roots (see section 1), by allowing for some
modifications (e.g. root cell wall simultaneously acts as the
OM and force transducer).

2.1. Osmotic actuator dynamic model I (energy storage
through an external elastic load)

In the first exemplificative implementation of the considered
osmotic actuator concept, the actuation work is stored through

Figure 2. Exemplificative implementation of the osmotic actuator
concept: actuation work is stored through the elastic deformation of
an external load.

the elastic deformation of an external load. In particular, a
piston is introduced, running along a straight cylindrical guide
with a cross-section area Sp as in figure 2 (clearly, the AC
displaceable boundary Sw is here represented by the sliding
base surface of the piston).

The piston displacement δ is governed by solvent flux and
it is trivially provided by the mass conservation law, namely
δ = (V − V0) /Sp. Moreover, by assuming that inertial and
friction effects associated with piston motion are negligible (as
for quasi-static piston displacement), momentum balance for
the piston provides the relation (p − pext) Sp = kELδ, where
kEL denotes the external load stiffness. The above relations
permit us to recast equation (3) as follows:

dV

dt
= SOMαOM

[
�0

V0

V
− kEL

S2
p

(V − V0)

]
. (4)

Equation (4) can thus be integrated, starting from the initial
condition V (0) = V0.

To this purpose, once the reference time t̄ :=
S2

p/ (kELSOMαOM) and the non-dimensional coefficient C :=
�0S2

p/ (V0kEL) are introduced, it is possible to rewrite
equation (4) and its initial condition so as to describe the
evolution of the non-dimensional volume v := V/V0 against
non-dimensional time τ := t/t̄, namely

dv

dτ
= C

1

v
− (v − 1) , v (0) = 1. (5)

Classical arguments (see e.g. Ince 1956) show that the
solution of problem (5) monotonically increases from the
initial value up to a regime value v∞. More precisely, once
ω = ω (C) := √

1 + 4C, v∗
1 = v∗

1 (C) := (1 + ω) /2 and
v∗

2 = v∗
2 (C) := (1 − ω) /2 are defined, it can be seen that

v∞ = v∗
1 (indeed, v∗

1 and v∗
2 are the roots of the steady-

state equation v∗2 − v∗ − C = 0, yet only v∗
1 is positive and

therefore physically admissible). Moreover, problem (5) can be
integrated by the separation of variables (see the appendix for
more details on this technique), thus obtaining the following
non-dimensional solution:

2τ = loge

[
� (1;C)

� (v;C)

]
(6a)

where

� (ξ ;C) := (
v∗

1 − ξ
)1+1/ω (

ξ − v∗
2

)1−1/ω
. (6b)

4
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Figure 3. Exemplificative trends of the AC volume increment versus time (non-dimensional quantities), as obtained from the solution (6).

It should be noted that, for the considered implementation,
the regime value v∞ only depends on C, namely v∞ =(
1 + √

1 + 4C
)
/2. Moreover, a characteristic time tc,p

associated with the considered ‘damped’ dynamics can be
derived from the left-hand-side term of equation (6a) by
imposing 2τ = t/tc,p, thus obtaining tc,p = t̄/2 (it only
depends on t̄ for the present case). Exemplificative trends for
the obtained solution are shown in figure 3, for some values of
the parameter C. For each curve, the filled circle is associated
with the characteristic non-dimensional time tc,p/t̄.

Despite its simplicity, the considered model permits us to
directly link, e.g., characteristic actuation time and AC volume
increase at regime to the free parameters t̄ and C. Additional
figures of merit, such as maximum actuation force, power
density and energy density, can be derived from the obtained
solution. However, such a derivation is not carried out here,
for ease of presentation (conversely, it is introduced for the
implementation discussed in section 2.2).

2.2. Osmotic actuator dynamic model II (energy storage
through elastic membrane bulging)

A further exemplificative implementation of the considered
osmotic actuator concept is based on a deformable membrane,
covering in particular the deformable boundary portion Sw

shown in figure 2. The considered membrane bulges due
to solvent flux, and a regime configuration can be reached
provided that internal membrane tension can bear the pressure
difference p − pext locally acting on the membrane surface, as
sketched in figure 4. Hence, as long as membrane deformation
remains within the elastic domain, work associated with the
osmotic actuation mechanism is stored as elastic energy in
the membrane structure. Before tackling model derivations,
it is worth remarking that the implementation at hand
holds potential for effective prototypical development and
experimental testing. Indeed, besides acting as an energy
storage (and possibly force transduction) element, the bulging
membrane might also lead to a favourable implementation by

Figure 4. Exemplificative implementation of the osmotic actuator
concept: actuation work is stored through the elastic deformation of
a bulging membrane (also preventing solvent leakages).

preventing solvent leakages from the AC in a rather simple
way.

Let us assume that the displaceable boundary Sw shown
in figure 2 is a circle with radius r, so that the footprint area of
the bulging membrane is SBM = πr2. Moreover, let the bulge
geometry be classically approximated through a spherical
shape, in order to obtain simple expressions for bulge height δ

and for the corresponding membrane tension (Small and Nix
1992). In more detail, provided that δ/r � 1, bulge volume
VBM (governed by solvent flux) can be approximated as VBM

∼=
SBMδ/2. Moreover, linear elastic theory provides the following
relation from the membrane momentum balance (Timoshenko
1964) (by assuming a uniform, biaxial tensional state): p −
pext

∼= (8YBMtBMδ3)/(3r4) = (8π2YBMtBMδ3)/(3S2
BM), where

YBM and tBM respectively denote membrane biaxial modulus
and thickness. The former parameter, in particular, can be
defined from the Young modulus E and the Poisson coefficient
ν as follows: Y := E/ (1 − ν). By combining the above
expressions, we obtain p−pext

∼= (
64π2YBMtBMV 3

BM

)
/
(
3S5

BM

)
5
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Figure 5. Exemplificative trends of the bulge volume versus time (non-dimensional quantities), as obtained from the solution (9).

and, by observing that VBM = V − V0, it is straightforward to
rewrite equation (3) as follows:

dV

dt
= SOMαOM

[
�0

V0

V
− kBM

S5
BM

(V − V0)
3

]
, (7)

where kBM := 64π2YBMtBM/3 represents a membrane stiffness
coefficient. Equation (7) can then be integrated, starting
from the initial condition V (0) = V0. Moreover, physical
representativeness of the corresponding solution must be
systematically checked with respect to the working hypothesis
of small bulging deformations (δ/r � 1) originally exploited
in order to formulate the proposed model.

In more detail, once both the reference time t̃ :=
S5

BM/
(
kBMSOMαOMV 2

0

)
and the non-dimensional coefficient

A := �0S5
BM/

(
V 3

0 kBM
)

are introduced, it is possible to recast
equation (7) and its initial condition so as to describe the
evolution of the non-dimensional bulge volume ε := VBM/V0

against non-dimensional time τ := t/t̃ (please note that τ is
here redefined compared to section 2.1 with a minor abuse of
notation), namely

dε

dτ
= A (1 + ε)−1 − ε3, ε (0) = 0. (8)

As for the piston implementation, the solution of
problem (8) monotonically increases from the initial value up
to a regime value ε∞, which satisfies the equilibrium condition
A = ε3

∞ (1 + ε∞). Moreover, by observing that ε almost
linearly increases versus τ (with slope A) for small values
of τ , it is possible to estimate a characteristic timescale τc for
the exponential decay of ε∞−ε, as follows: Aτc ≈ ε∞, whence
(for ε∞ small enough) τc ≈ A1/3/A = A−2/3. The differential
problem (8) can be numerically integrated through standard
methods (see, e.g., Press et al 1992). However, consistent with
the small bulging deformation hypothesis (and by assuming
‘reasonable’ implementations), we are interested in solutions
ε small enough (compared to 1), say ε∞ <∼ 10−1. This implies
that A<∼10−3, as obtained from the above equilibrium condition.
In the light of this observation, it is possible to approximate
ε(τ ; A) with an analytical expression θ (τ ; A), i.e. ε ∼= θ ,

which solves a simplified differential problem derived from (8)
by truncation. Details regarding the considered derivation are
reported in the appendix, for ease of presentation, while the
resulting expression for θ is recalled hereafter:(

3θ2
∞ + A

)
τ = loge

[

(0; A)


(θ; A)

]
+ �(θ; A) − �(0; A) ,

(9a)

with

θ∞(A) :=
(

A

2

)1/3
⎧⎨
⎩

[
1 +

√
1 + 4

27
A

]1/3

+
[

1 −
√

1 + 4

27
A

]1/3
⎫⎬
⎭ , (9b)


(ξ ; A) := θ∞ − ξ√
ξ 2 + θ∞ξ + θ2∞ + A

, (9c)

�(ξ ; A) := 3θ∞√
3θ2∞ + 4A

tan−1

(
2ξ + θ∞√
3θ2∞ + 4A

)
. (9d)

The solution (9) accurately approximates ε over the considered
range of the parameter A, as shown in the appendix.
Exemplificative trends for the provided solution are shown in
figure 5, for some values of the parameter A. For each curve, the
filled circle is associated with the abscissa tc,BM/t̃, where tc,BM

is a characteristic time associated with the considered actuation
dynamics. More precisely, it is derived from the left-hand-side
term of equation (9a), by imposing

(
3θ2

∞ + A
)
τ ∼= t/tc,BM,

whence tc,BM
∼= t̃/

(
3θ2

∞ + A
)
.

Clearly, the main asset enabled by the obtained closed-
form representation (9) is the possibility of studying how
the considered dynamics depends on the involved parameters,
through directly computable expressions. Relevant figures of
merit for the actuation problem at hand are characteristic time
(tc,BM), maximum force (Fmax), peak power (Pmax), power
density (μP := Pmax/V0), cumulated work (W ) and energy
density (μW := W/V0). Corresponding scaling laws are
reported in the appendix (see, in particular, table A.1), for
ease of presentation.

6
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3. Results and discussion

In this section, we elaborate on the membrane bulging
model introduced in section 2.2, in view of its potential
for prototypical development and experimental testing. In
particular, we draw some preliminary design considerations,
by exploiting the scaling laws reported in the appendix.

By recalling the typical pressure associated with plant
roots penetration in soil (Zhu and Boyer 1992), we
preliminarily adopt �0 = 106 Pa. Conversely, as regards
the OM, it may not be suitable to derive a reference value
for αOM from data regarding cell walls in plant roots, since
natural membranes also involve active transport mechanisms
(for e.g. ion gate protein and special osmotic metabolism
(Maurel 1997)). This, in turn, generally lowers the membrane
rejection capabilities against solute transport, thus leading
to membrane behaviour quite far from ideal. Therefore, in
view of subsequent experimental testing, it seems suitable
to consider commercially available membranes designed to
operate with forward and pressure-retarded osmotic processes
(Cath et al 2006), i.e. optimized for solvent fluxes q̇ entering
the AC like the one sketched in figure 1. Relevant items on
the market, almost uniquely produced by HTITM (Hydration
Technology Innovations, Scottsdale, AZ, USA), are made
up of cellulose polyacetate and exhibit a water permeability
coefficient of around 3 × 10−13 m s−1 Pa−1. Moreover, they
are suitable for operation with sodium chloride (NaCl), since
the corresponding rejection coefficient (which is 1 in the
perfectly semi-permeable case) is in the range 0.95–0.97 (from
datasheet) and they exhibit marginal performance degradation
due to fouling. Both these aspects support the working
hypotheses (h1) and (h2) introduced in section 2. Hence, for
the present purposes it is reasonable to adopt αOM = 3 ×
10−13 m s−1 Pa−1, with reference to an existing commercial
OM. It should be remarked that the above reference to NaCl
is purposely introduced in view of subsequent experimental
testing. Indeed, almost ideal osmotic behaviour can be
achieved by using NaCl within water, thanks to the fact
that NaCl is perfectly dissociated in water and it exhibits no
significant deviations from the van’t Hoff law (i.e. equation (1),
with i = 2) (Marshall et al 1996). Moreover, the use
of NaCl as a solute permits containment of the fouling
effect on the OM (Mi and Elimelech 2008), which has
consequent detrimental effects on the performance of the
envisaged osmotic actuator. Fouling effects, in fact, may play
a more major role for artificial membranes than in plant
roots, where they are partly hindered by the dynamic nature
of cell wall harnessing enzymes for the production of new
cellulose (Cosgrove 2005). Finally, still in view of subsequent
experiments, it is convenient to also estimate kBM. To the
purpose, we can invoke bioinspiration by looking to the
cell wall of common plant roots, whose Young modulus is
typically around 109 Pa (Gibson and Ashby 1999, Gibson et al
2010). Hence, by considering CellophaneTM as a reference
material for the bulging membrane (having Young modulus
E ∼= 3 × 109 Pa (Mark 2009) and the Poisson coefficient
ν ∼= 0.3 (Nakamura et al 2004)) and by assuming a membrane
thickness tBM

∼= 3 × 10−5 m (as for many commercially

available films), we end up with the estimate kBM
∼= 2.7 ×

107 Pa m.
Let us then address the actuator size, by defining L :=

S1/2
OM, λ := V0/S3/2

OM and β := SBM/SOM. It should be
noted that L provides a characteristic size for the actuator
portion where solute transport takes place (being thus
related to surface effects), while λ accounts for the relative
importance between volume and surface effects. Moreover,
for reasonable implementations, 0 < β < 1. That said, it
is immediate to obtain A = (

�0β
5L

)
/
(
kBMλ3

)
and t̃ =(

β5L2
)
/
(
αOMkBMλ2

)
, and to recast the actuator figures of

merit (we make use of the simplified scaling laws in table A.1,
for ease of presentation) as follows:

tc,BM
∼= 1

3αOMk1/3
BM�

2/3
0

β5/3L4/3, (10)

Fmax
∼= �0βL2, (11)

Pmax
∼= �2

0αOM

4
L2 ⇒ μP

∼= �2
0αOM

4

1

λL
, (12)

W ∼= �
4/3
0

4k1/3
BM

β5/3L10/3 ⇒ μW
∼= �

4/3
0

4k1/3
BM

β5/3L1/3

λ
. (13)

Furthermore, it is possible to estimate the bulging parameter
δ/r ∼= 2

√
πVBM/S3/2

BM as follows:

δ

r
∼= 2

√
π�

1/3
0

k1/3
BM

β1/6L1/3. (14)

Based on the above relations, at the first approximation
λ only affects power density μP and energy density μW in
a simple way. Equations (12) and (13) show that optimal
power and energy densities are achieved by minimizing λ (the
minimum value which can be effectively attained in a practical
implementation clearly depends on technological constraints,
whose discussion is beyond the present scope). Furthermore,
equation (12) shows that power consumption can be reduced
by reducing L. Conversely, equations (10) and (11) show that
greater/lower values of β and L lead to greater/lower values
for both actuation characteristic time and maximum force.
Hence, a trade-off between lower-yet-stronger and faster-yet-
weaker actuation must be accepted, based on further design
targets/constraints. If, for instance, we primarily target a
specific actuation time, we can firstly use equation (10) in
order to link β and L; then, we can compute the corresponding
maximum force by exploiting equation (11), as exemplified in
figure 6. In this figure, dotted curve portions denote less reliable
model predictions, being associated with δ/r � 0.2 based on
equation (14). For instance, a 1 min characteristic time can be
achieved by choosing L ∼= 5 mm (hence SOM

∼= 25 mm2) and
SBM/SOM

∼= 0.4 or L ∼= 10 mm (hence SOM
∼= 100 mm2) and

SBM/SOM
∼= 0.2 (corresponding values for Fmax are around 10

and 20 N, respectively).
If, instead, we primarily target a specific maximum

actuation force, we can firstly use equation (11) in order to link
β and L; then, we can compute the corresponding characteristic
time through equation (10), as exemplified in figure 7 (as in the
previous figure, the dotted curves denote less reliable model

7



Bioinspir. Biomim. 8 (2013) 025002 E Sinibaldi et al

(a) (b)

Figure 6. (a) Curves at constant characteristic time (tc,BM) a one-to-one relation between β and L is obtained from equation (10).
(b) Corresponding maximum force (Fmax), as obtained from equation (11) by also considering the β–L. relation. Fixed model parameters:
�0 = 106 Pa, αOM = 3 × 10−13 m s−1 Pa−1, kBM = 2.7 × 107 Pa m.

(a) (b)

Figure 7. (a) Curves at constant maximum force (Fmax): a one-to-one relation between β and L is obtained from equation (11).
(b) Corresponding characteristic time (tc,BM), as obtained from equation (10) by also considering the β–L relation. Fixed model parameters:
�0 = 106 Pa, αOM = 3 × 10−13 m s−1 Pa−1, kBM = 2.7 × 107 Pa m.

predictions, being associated with δ/r � 0.2). For instance, a
20 N maximum force can be achieved by choosing L ∼= 5 mm
(hence SOM

∼= 25 mm2) and SBM/SOM
∼= 0.8 or L ∼= 10 mm

(hence SOM
∼= 100 mm2) and SBM/SOM

∼= 0.2 (corresponding
values for tc,BM are around 3.5 and 1 min, respectively).

Expressions (10)–(13) permit us to also assess the
influence of the remaining model parameters (i.e. those fixed
above). For instance, increasing �0 would be beneficial for
reducing characteristic time and for increasing maximum
force, as well as power, power density, cumulated work and
energy density. However, the solubility limit of the adopted
solute possesses an upper bound on �0, and (having in
mind, e.g., NaCl for effectively carrying out experimental
tests) the adopted value seems to be a reasonable reference.
Moreover, as anticipated at the beginning of this section,
OM permeability is practically fixed. However, greater αOM

values would lead to reduced characteristic time and increased

power and power density. Conversely, the stiffness of the
bulging membrane might be negotiated. For instance, it can
be verified from equations (10) and (11) that increasing kBM

by a factor 10 would increase the maximum force (at given
tc,BM) in figure 6(b) by a factor 101/5 ∼= 1.6, and reduce the
characteristic times (at given Fmax) in figure 7(b) by a factor
101/3 ∼= 2.2. Corresponding reduction in μW is mainly due to
the reduced bulge volume.

Main limitations of the proposed model concern the
ideal description of the osmotic process and the working
hypothesis of small bulging deformations originally exploited
for model derivation. As regards osmosis, it was anticipated at
the beginning of the present section that rather ideal osmotic
behaviour can be achieved by considering common solutions,
such as sodium chloride in water, together with commercially
available membranes designed for forward osmosis. Indeed,
for sodium chloride in water the van’t Hoff law nicely applies;

8
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conversely, other inorganic salts with even greater van’t Hoff
coefficients exhibit lower water solubility and/or lower water
solution stability, while also producing undesired stony by-
products. Moreover, sodium chloride also leads to contained
fouling effects with available osmotic membranes like the ones
mentioned at the beginning of the present section. Other solutes
such as sucrose (which can be effectively rejected by the
aforementioned membranes as well) may cause detrimental
effects on performance. For this reason, despite being the
main solute for osmosis in plant root’s tissue, sucrose does not
seem to be a promising candidate for subsequent experimental
testing (this is nonetheless consistent with the fact that the
cellular wall does not represent an ideal source of inspiration
for the present study, as remarked above). Furthermore, it is not
realistic to fully neglect solute rejection by the OM: relevant
diffusion dynamics might be considered in more elaborate
models, depending on characteristic times. In addition, it
was assumed that the whole bulk solute concentration drives
the osmotic flux (see hypothesis (h3) at the beginning of
section 2), thus likely underestimating surface effects close to
the OM. This assumption, indeed, led to the lumped parameter
approximation at the base of equation (3) (as well as to some
derived results like the fact that, at a first approximation,
actuation characteristic time only weakly depends on λ), yet
it suitably applies to actuator configurations with a small
aspect ratio λ only. However, it seems advisable to refine these
modelling aspects in a further version of the model, e.g. by also
considering membrane polarization effects (Cath et al 2006),
which usually hamper the OM performances. Moreover, as
regards small bulging deformations, it is worth remarking that
they were assumed in order to introduce very simple analytical
relations leading to model closure, otherwise very hard to
achieve. Indeed, finite deformations of a bulging membrane
should be tackled with more refined numerical modelling
techniques, not commensurate with the simple approach
deliberately pursued in this study. Nonetheless, these aspects
should be included in a further version of the model, in order
to take full advantage of the bulging implementation. This way
one could also release the underlying assumption of uniform
bi-axial tension, which is systematically violated towards the
membrane boundary (so that the corresponding approximation
gets less accurate for small SBM). Finally, it should be noted
that the assumption of negligible OM deformation during
the actuation process (hypothesis (h4) at the beginning of
section 2) was exploited from the first model derivation steps
(for both piston and bulging implementations). However, it
is worth emphasizing that even if OM deformations could
be modelled through additional relations (e.g. derived from
plate/membrane theory), they are deliberately unwanted in the
considered osmotic process, since they would lead to incorrect
dynamics (the displaceable/deformable surface Sw introduced
in section 2 is indeed conceptually different from any OM
portions). In fact, when such a hypothesis is not fulfilled, it
is possible to observe an AC volume increment even without
the presence of any deformable boundary portion Sw, as e.g.
in Chahine et al (2005). Hence, suitable fastening of the OM
plays a crucial role for practical implementations.

To summarize (and with focus on the bulge
implementation), the proposed model permits us to draw

some preliminary design considerations, starting from the
scaling laws which were obtained for the actuation figures
of merit. For instance, once relevant parameters (namely the
initial osmotic pressure difference �0, the OM permeability
coefficient αOM and the bulging membrane stiffness kBM)
are fixed, it us permits to define a characteristic size L =
S1/2

OM (and the corresponding surface ratio β = SBM/SOM)
for obtaining a given actuation characteristic time and a
corresponding maximum force (or vice versa). For instance,
if we pursue a 1 min characteristic time (with the parameters
fixed in figure 6) and we aim at obtaining a maximum force
around 10 N, we should choose L = 5 mm (related β is
around 0.4). Furthermore, by minimizing the aspect ratio
λ = V0/S3/2

OM (always in consideration of proper technological
constraints), a power-dense and energy-dense actuator is
achieved. In other words, the proposed model provides
simple analytical expressions for obtaining a preliminary
dimensioning of the envisaged osmotic actuator, based on
design targets/constraints. This seems to support the choices
which were made for model derivation, including the scaling
quantities and non-dimensional model parameters. Within
the limits of the adopted approximations, the main take
home messages are to use targeted performances (primarily
characteristic time and maximum force) for defining surface-
related design parameters (like L and β) and to minimize the
volume-to-surface aspect ratio λ, as permitted by additional
(primarily technological) constraints. Experimental testing is
nonetheless necessary for validating model predictions; having
already in mind some key ingredients (e.g. to use sodium
chloride in water, to adopt the aforementioned commercial
OM . . . ), actuator prototyping and actuator performance
assessment will be carried out in the near future.

4. Concluding remarks

Actuation currently represents a bottleneck for the
development of many engineering systems. In particular, there
is a growing quest for low power consumption and energy
efficient actuation strategies, for which a remarkable source
of inspiration is provided by the plant kingdom. Indeed,
plant (non-muscular) movements are typically characterized
by remarkable energy efficiency, high actuation force and
a rich motion repertoire; all these aspects synergistically
support plant survival in challenging dynamic environments.
In the light of these considerations, suitable comprehension
of plant osmotic-driven actuation strategies holds potential
for the development of innovative biomimetic actuators, with
application to many fields, including biorobotics.

This study takes a preliminary step towards the
development of innovative osmotic-driven actuators, by
analysing a concept simple enough to allow for modelling
elaborations, while retaining the main physical phenomena
involved in the osmotic process. In particular, some degree
of simplification was introduced in order to keep analytical
tractability; moreover, two implementations were presented,
differing from each other in the way of achieving storage of
the osmotic actuation work. We presented analytical solutions
for both implementations, yet we only elaborated on the
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latter, in the light of its potential for effective prototypical
development and experimental testing. In more detail, our
approach permitted us to obtain explicit scaling laws for
the actuation figures of merit, namely characteristic time,
maximum force, peak power, power density, cumulative
work and energy density. We showed how to use these
expressions in order to draw some basic design considerations,
by exemplifying a preliminary dimensioning of the envisaged
osmotic actuator based on design targets/constraints (e.g.
assigned actuation characteristic time and/or maximum force).
The role of the volume-to-surface aspect ratio was also
elucidated, with reference to actuator performance. Upon
actuator prototyping, it is expected to experimentally assess
model predictions in the short period; for this purpose, several
elements necessary for experimental testing were already
identified. In this spirit, the proposed modelling approach
provides ‘icebreaking’ tools which can be effectively used for
preliminary design, in particular, for the cheap exploration of a
wide set of actuator configurations, to be incrementally refined
during design and subsequent optimization. In addition,
the identification of suitable interfaces for transferring the
actuation work to the target environment will permit us to better
specify the displaceable/deformable portion of the AC and the
associated load conditions, thus further defining an actuator
configuration to be optimized during later design stages.
Nonetheless, mastery over the osmotic process harnessed in
a proper actuator design holds potential for the development
of controllable actuation strategies outperforming the passive
ones proposed so far. Hence, the proposed study represents the
first step on a challenging yet promising research path towards
the development of innovative biorobotic solutions inspired by
the plant kingdom.
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Appendix

For design purposes, it is convenient to replace (8)
with a problem which can be analytically solved, since
the latter generally leads to explicit relations for the
actuator dynamics/performance as a function of the involved
parameters. To this aim, we can truncate the expansion
(1 + ε)−1 ∼= 1−ε+ε2−ε3+· · · so as to define an approximate
problem, and adopt the solution to such a problem in order
to approximate the ‘exact’ solution ε. For instance, a first-
order truncation leads to the following problem (we denote
the dependent variable by θ to stress the fact that we are
addressing a ‘new’ problem):

dθ

dτ
= A (1 − θ ) − θ3, θ (0) = 0. (A.1)

The regime value θ∞ is given by the real root of
the equilibrium equation A (1 − θ ) − θ3 = 0 (it can

be shown that there is a unique real root): the sought
expression is reported in (9b). In particular, A (1 − θ ) −
θ3 = (θ∞ − θ )

(
θ2 + θ∞θ + θ2

∞ + A
)
, so that (A.1) can be

integrated by the separation of variables as follows:

dτ = dθ

A (1 − θ ) − θ3
⇒

∫ τ

0
dη

=
∫ θ

θ (0)=0

dω

(θ∞ − ω)
(
ω2 + θ∞ω + θ2∞ + A

) , (A.2)

where the integrals (involving rational functions) can be
explicitly computed by recalling classical results, see e.g.
Jeffrey and Zwillinger (2007). The obtained solution is
reported in (9). Alternatively, one could have considered a
zero-order truncation leading to the equation dθ/dτ = A − θ3

in place of the one in (A.1); the corresponding solution can be
obtained as for the first-order truncation case (it is omitted, for
brevity). Clearly, solution (9) is expected to better approximate
ε compared to that based on zero-order truncation. However,
whether its accuracy is enough for the present purposes (or,
conversely, if it is necessary to perform higher order truncation)
must be assessed; this is done below, also based on relevant
figures of merit of the considered dynamic actuation model.

As anticipated in section 2.2, characteristic actu-
ation time tc,BM is derived from the left-hand-side
term of equation (9a) by imposing

(
3θ2

∞ + A
)
τ ∼=

t/tc,BM, whence tc,BM
∼= t̃/

(
3θ2

∞ + A
)
. Moreover, ac-

tuation force is provided by F = (p − pext ) SBM =(
kBMV 3

0 /S4
BM

)
ε3 = (�0SBM/A) ε3 ∼= (�0SBM/A) θ3, whence

maximum force reads Fmax
∼= �0SBM

(
θ3
∞/A

)
. Further-

more, power is given by P = (p − pext) (dVBM/dt) =(
�0V0/

(
At̃

))
ε3 (dε/dτ ) ∼= (

�0V0/
(
At̃

))
θ3 (dθ/dτ ) =(

�0V0/
(
At̃

))
θ3

(
A (1 − θ ) − θ3

)
. Peak power Pmax is then

obtained by maximizing the latter expression with respect to
θ (since θ monotonically increases in time, so that there is a
one-to-one relation between them). An analytical expression
can also be obtained in this case; it is not reported here for
simplicity, yet it is suitably approximated in table A.1. Power
density is then defined as μP := Pmax/V0. Moreover, elemen-
tary actuation work is given by dW = (p − pext) dVBM =(
kBMV 3

0 /S5
BM

)
ε3V0 dε = (�0V0/A) ε3 dε, whence actuation

work (up to regime) reads W = (�0V0/4)
(
ε4
∞/A

) ∼=
(�0V0/4)

(
θ4
∞/A

)
. Finally, energy density is defined as μW :=

W/V0. By exploiting the solution (9), we report the aforemen-
tioned expressions in the left column of table A.1. However,
by making use of the approximation in (A.3), we report ap-
proximate relations (terms An with n � 1 are neglected in the
relevant expansions), for the sake of simplicity. Corresponding
expressions, as derived from the above cited solution based on
zero-order truncation, are also reported in the right column of
table A.1, for the sake of comparison (see below).

Finally, figure A.1 shows the relative error on bulging
volume at regime, power density and energy density, which
is introduced by approximating ε with θ . In order to obtain
such an error, the ‘exact’ solution ε was firstly determined
by numerically integrating (8) through an adaptive, fourth-
order accurate Runge–Kutta scheme (Press et al 1992), by
choosing a strict relative tolerance (namely 10−12). Derived
figures of merit were then compared with the expressions
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(a) (b)

Figure A1. Relative error in bulging volume at regime, power density and energy density, introduced by the approximate solution θ versus
the ‘exact’ one ε. (a) Error associated with first-order truncation. (b) Error associated with zero-order truncation.

Table A.1. Actuation figures of merit, as derived from the analytical expression of the approximate solution θ .

Solution (9) based on first-order truncation Solution based on zero-order truncation

θ∞ = [cf (9b)] ∼= A1/3
(
1 − 1

3 A1/3
)

(A.3) θ∞ = A1/3 (A.10)
tc,BM

∼= 1
3 t̃A−2/3

(
1 + 1

3 A1/3
)

(A.4) tc,BM
∼= 1

3 t̃A−2/3 (A.11)
Fmax

∼= �0SBM

(
1 − 3A1/3 + 3A2/3

)
(A.5) Fmax

∼= �0SBM (A.12)

Pmax
∼= �0V0

4 t̃−1A
(

1 − 2
(

A
2

)1/3 + 16
9

(
A
2

)2/3
)

(A.6) Pmax
∼= �0V0

4 t̃−1A (A.13)

μP
∼= �0

4 t̃−1A
(

1 − 2
(

A
2

)1/3 + 16
9

(
A
2

)2/3
)

(A.7) μP
∼= �0

4 t̃−1A (A.14)

W ∼= �0V0
4 A1/3

(
1 − 4

3 A1/3 + 2
3 A2/3

)
(A.8) W ∼= �0V0

4 A1/3 (A.15)
μW

∼= �0
4 A1/3

(
1 − 4

3 A1/3 + 2
3 A2/3

)
(A.9) μW

∼= �0
4 A1/3 (A.16)

in table A.1, namely (A.3), (A.7) and (A.9), and (A.10),
(A.14) and (A.16), for the respective θ solutions. It turned
out that solution (9), based on first-order truncation, provides
an accurate approximation over the considered range of A
(so that it is not necessary to consider higher order truncation,
leading in turn to more involved and less expressive formulas).
Estimates obtained from zero-order truncation are nonetheless
useful for preliminary design, as exemplified in section 3.
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