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It is generally assumed, both in common-sense argumenta-
tions and scientific concepts, that brains and neurons represent 
late evolutionary achievements which are present only in more 
advanced animals. Here we overview recently published data clearly 
revealing that our understanding of bacteria, unicellular eukaryotic 
organisms, plants, brains and neurons, rooted in the Aristotelian 
philosophy is flawed. Neural aspects of biological systems are 
obvious already in bacteria and unicellular biological units such 
as sexual gametes and diverse unicellular eukaryotic organisms. 
Altogether, processes and activities thought to represent evolu-
tionary ‘recent’ specializations of the nervous system emerge rather 
to represent ancient and fundamental cell survival processes.

Lessons from Bacteria

From communicative behavior, via ‘social cognition to intelli-
gence’. Despite their organismal simplicity, bacteria perform complex 
communications allowing them to deal with complex environment. 
Bacteria use special chemical ‘language’ known as quorum sensing to 
exchange relevant information and coordinate bacterial populations 
into supracellular assemblies1-5 resembling multicellular organisms.6 
Bacteria communicate also with eukaryotic hosts.7-12 Signal trans-
duction in bacteria resembles neural networks.13-19 Bacteria sense 
effectively diverse parameters from their environment and their 
cognitive20 and intelligent13,15 behavior implicate that life has neural 
features already at the prokaryotic level. For example, information 
processing by cyanobacteria during their adaptation to phosphate 
fluctuations involves distinct adaptive modes acting as ‘experienced’ 
self-constitution of organism under fluctuating environment.21 It is 
relevant in this respect that several proteins mediating neurotransmis-
sion across synapses in brains have been found in bacteria too.22,23

 Studies on bacterial resistance to diverse antibiotics concluded 
that bacteria actively resist these antibiotics via ‘cognitive’ and ‘intelli-
gent’ activities including innovation, anticipation and learning.24,25

Lessons from Unicellular Eukaryotes and Gametes

Swimming and crawling of unicellular ‘neurons’ showing ‘cogni-
tion and intelligence’. Neural parallels are even more convincing 
in unicellular eukaryotic organisms. For example, ciliate protozoan 
Paramecium has been devoted a whole chapter in the recently 
published book, An Introduction to Nervous Systems.26 Although not 
covered in detail here, there are several other convincing examples of 
swimming unicellular eukaryotes with similarly complex sensory and 
neuronal behavior such as, for example, predatory Euglena or green 
alga Chlamydomonas. These have even so-called ‘eye-apparatus’, 
which commands, via photo-induced intracellular electric signals, 
their motor motoric flagella.27,28

Another example of unicellular eukaryotic organisms clearly 
showing neural behavior is amoeba Physarum polycephalum. This 
smart organism even solves geometric puzzles if allowed to show 
his abilities using clever experimental systems.29-33 This ‘cognitive’ 
smartness and behavioral ‘intelligence’ of this rather unspectacular 
organism resembling large aggregate of protoplasm is truly amazing. 
Crawling over agar plates, it shows unicellular forms of ‘learning’, 
‘memory’, ‘anticipation’, ‘risk management’, and other aspects of 
‘intelligent behavior’.29-35

Finally, gametes of multicellular organisms express diverse neuronal 
molecules which underlie cell-cell communication, chemotaxis and 
other aspects of sexual reproduction in animals.36-52 For instance 
sperm cells and oocytes express numerous neurotransmitters and their 
receptors.36-48 These are involved, for example, in sperm acrosome 
reaction after sperm cells successfully identify and approach the 
receptive oocytes. 37,44,49-52

Lessons from Plants

Root apex cells versus neurons. Recent advances in plant cell 
biology and neurosciences reveal surprising similarities between 
plants cells and neurons. They are inherently polar, with signal input 
and signal output poles, secrete signaling molecules via robust endo-
cytosis-driven vesicle recycling apparatus, and are capable of sensory 
perception and integration of these multiple sensory perceptions into 
adaptive actions which serve for survival of organisms harboring these 
cells specialized for signaling and communication.53-62 Moreover, 
neurons and plant cells have in common abilities to generate spon-
taneously action potentials which convey electric signaling across 
tissues of multicellular organisms (for plant cells, see refs. 63 and 64). 
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Of course, plant cells do not extend long projections as neural axons 
or any similar protrusions—they do not need this as the polarized 
plant cells are arranged within regular cell files where pre-synaptic 
poles closely adhere to post-synaptic poles.53,54,65,66

In plants, neuronal features are especially prominent in root cells 
of the transition zone interpolated between the apical meristem and 
elongation region.67-70 Multifunctional signaling molecule auxin 
emerges as plant-specific neurotransmitter which is secreted by pre-
synaptic poles of the transition zone root cells and is eliciting electric 
responses and calcium, ROS and NO based signaling cascades at the 
post-synaptic domain of adjacent cells.53,65,68,69,71-74

Plant neurobiology, kin-recognition, cognition and plant intel-
ligence. Keeping in mind the surprising neuronal achievements of 
bacteria and unicellular eukaryotes, it should not be a big surprise 
to learn that also plants show most of these features. In fact, there 
are several recently published, but also older, data demasking 
plants as sensitive organisms enjoying almost all relevant neuronal 
features,63-68,75,76 including ‘kin-recognition’77,78 and plant-specific 
form of ‘intelligence’.59-61 Nevertheless, plant neurobiology experi-
ences difficult start62,79,80 which is related to deeply-rooted, almost 
‘dogmatic’, view of plants as passive creatures not in a need of any 
neuronal processes and capabilities.79 One can trace this strong belief 
back to Aristoteles,81,82 who makes clear that it will be rather tough 
to break this spell despite the fact that one of the first attempts to 
rehabilitate plants was done by nobody less than Charles Darwin.83 
Charles Darwin proposed that the root apex represents the brain-like 
anterior pole of the plant body83,84 and our recent data support this 
proposal strongly.53,65,68,69,85,86

Lessons from Sessile Animals

‘Young brain’ and ‘brain with anus’ concepts. Recent surprise 
comes from analysis of gene expression patterns relevant for brain, 
heart, and the anterior-posterior axis. The Hydra ‘foot’ emerges as the 
most anterior part of the Hydra body whereas original ‘mouth’ turns 
into the posterior pole, and corresponds to ‘anus’.87-89 Consequently, 
the brain emerges as the oldest part of metazoan body. 87 Importantly, 
not just Hydra but all sessile animals are anchored in substrate via 
the anterior poles of their bodies90 (for overview see Dawkins91). 
Interestingly in this respect, these sessile marine animals reproduce 
via small swimming larvae, which settle down to substrates with their 
anterior poles. Moreover, neurotransmitters like serotonin92,93 and 
neuropeptides94 are relevant for neurons-driven settlement of sensory-
primed larvae and subsequent metamorphosis. Similarly in sessile 
marine algae like Ulva, swimming zoospores settle via sensory cues 
with their anterior pole to the substrate.95 This fits nicely with the 
plant body having the root pole as anterior-neural part and the shoot 
pole as posterior-sexual part54 (see also refs. 83–85). Interestingly in 
this respect, monospores of marine red alga Porphyre yezoensis assemble 
dense F-actin meshworks at their anterior poles.96,97 During settling, 
the adhesive pole becomes the F-actin-enriched pole, suggesting that 
the F-actin rich anterior pole is corresponding to the substrate-settled 
pole.97 All these examples implicate that in most settled multicel-
lular organisms, irrespective if plants or animals, the anterior pole 
is penetrating substrate anchoring the whole body in fixed position. 
Settled and anchored anterior pole then accomplishes filter feeding in 
plants as well as in some sessile animals.90,91

Corals and Trichoplax

Complex neurobiology gene networks ‘without’ neurons and 
brains. Recent genomic analysis and projects resulted in surprising 
neuronal complexity which was not expected in these sessile (corals) 
or only slowly moving (Trichoplax) multicellular animals.98-103 As 
they are believed to lack brains (corals) and even neurons (Trichoplax) 
and, similarly as plants, considered not to be in any need of neuro-
biological apparatus due to sessile life-style; these data represent new 
challenge for the neurosciences. Until now, neurosciences typically 
associate complex neural systems with movements of evolutionary 
more advanced organisms; with humans at the top, being considered 
for the only organism having higher levels of consciousness.82,104 

Importantly, as sessile multicellular animals show almost all 
‘so-called’ plant-specific features (Table 1), the profound differences 
between animals and plants are, in fact, rather secondary features of 
their sessile life-style. They do not represent, as generally accepted, 
the plant-animal schism, which can be traced back to Aristoteles and 
his philosophy.81,82 

Evolution of Action Potentials from Evolutionarily Ancient 
Plasma Membrane Repair Processes?

In an attempt to explain existence of action potentials in walled 
plant cells, Andrew Goldsworthy proposed in his very stimulating 
theoretical article that plant action potentials evolved from ancient 
repair mechanisms coping with numerous injuries early cells were 
facing.105,106 He proposed in this concept that membrane depo-
larization, which is accompanying these rapid electrical signals, is 
needed for repair of damaged membrane. Although the primary 
function of action potentials was to depolarize membrane to allow its 
repair, such electrical signals running from sites of injury turned-out 

Table 1 Plant-like features in sessile animals

1. Sessile Lifestyle
2. Phenotypic Plasticity
3. Modularity and Metamers
4. Cell-Cell Channels
5. Vascular Systems Driving Solutes
6. Secondary Metabolites
7. Continuous Exo-Skeletons 
8. Feeding via Filtrating Solutes
9. Photosynthetic Symbionts
10. Asexual Clonal Reproduction
11. Totipotency
12. High Longevity
13. Only Innate Immunity
14. Predator-Induced Defence
15. High Capacity for Regeneration
16. Apical Growth Zones
17. Opening Pores at Surface
18. No Sensory Organs
19. Allegedly no Neural Systems

All these features are pooled from several different sessile animals.
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to be very useful communication pathway for intracellular as well as 
transcellular signaling. In support of this attractive concept, intracel-
lular action potentials are linking the eye apparatus of unicellular 
algae with the flagellum in sensory-motoric circuit.27,28 Moreover, 
putative intra-neuronal action potentials underlie intracellular elec-
trical communication between synapses and nuclei.107 Importantly, 
cell membrane resealing was reported to be accomplished via 
vesicular recycling mechanism closely resembling neuronal synaptic 
activity.108 In addition, plant synaptotagmins are also relevant for 
vesicular repair processes at the plasma membrane suffering from 
stress-induced damages.109 Obviously, processes thought to represent 
evolutionary ‘recent’ specializations of the nervous system emerge, in 
fact, as ancient and fundamental cell survival processes.

Interestingly, anesthetics are diverse substances which can 
quickly and reversibly switch off consciousness in humans, as well 
as to compromise evoked and spontaneous motor responses in 
animals, tactile plants, ciliated protists.110-117 Recently, it has been 
proposed that the capacity to respond to anesthetics arose already 
in unicellular organisms110 as an adaptation to boundary membrane 
homeostasis and ion channels activities to changing environmental 
conditions.110-112 Importantly, this concept implicate existence of 
endogenous anesthetics-like substances. Plants are very informative 
in this respect. Endogenous levels of ethylene, which is considered by 
plant sciences only as plant stress hormone, increase rapidly in plant 
cells and tissues suffering from diverse stress situations.113 Intriguingly 
in this respect, ethylene belongs also to very effective anesthetics and 
was even used in medicine several decades ago.114,115

Non-Genomic Sensory Perceptions Are an Integral Part  
of Neural Information

When sensory events change structures, neurons, brains and 
organisms. Biological systems actively experience environment, both 
abiotic and biotic, and store (memorize) the obtained information 
in form of embodied knowledge.118-120 Via active accumulation 
of sensory-mediated experiences, sensory cells (neurons) change 
their structure, development, cell-cell communication (synaptic 
plasticity), as well as their activities and future fates.121-124 This 
important phenomenon is obvious already at subcellular levels such 
as cilium of sensory neuron which are not static structures but plastic 
antennae whose structure and function depends on the history of 
perceptions and signaling activities.125,126 As sensory perceptions 
and experiences represent non-genomic information;122-127 neurons, 
brains, plants and their cells, as well as bacteria and their colonies are 
phenotypically plastic.121-124,128,129 They are less hard-wired geneti-
cally but shaped structurally via experience-dependent neural processes 
based on sensory perceptions received from environment.122-124 As 
it is the case of developmentally open and plastic plants;84,86,129,130 
also neurons, their networks, and animal brains are shaped besides 
genetically (Aristotelian bottom-top direction) also environmentally 
(Platonian top-down direction).121-124 This feature makes the essence 
of sensory networks for unique realm in biology, realm which is not 
reserved only for humans or animals, realm which spans across all 
biological levels, and realm which is evolutionarily as ancient as the 
life itself. Obviously, as stated also by Szentágothai and Érdi,131 the 
essence of neural needs revision and re-examination in biology.

Current Biology Needs to Complete the Paradigm Shift 
Initiated by Galileo Galilei and Charles Darwin

As mentioned above, contemporary biology is still trapped in 
Aristotelian paradigm that plants differ profoundly from animals 
due to their insensitive nature and lacking the abilities to actively 
reconstruct environment from past sensory experiences in order 
to perform adaptive behavior allowing survival despite challenging 
environmental conditions. Recent advances in plant sciences have 
revealed that the sensory plants do not differ profoundly from the 
sensory animals.53-62,68,69,74-78 Close similarities in sensory and 
neurobiological aspects are at odd with the currently dominating 
evolutionary ideas about plants and animals (example in Baldauf and 
Palmer132). However, plants and animal share several complex and 
conserved features, missing from fungi and unicellular organisms, 
suggesting that they might be phylogenetically much more closely 
related.133,134 Alternatively, these neuronal similarities between 
plants and animals are results of convergent evolution. Irrespective 
if these similarities are result of homologous or analogous struc-
tures and processes, examples of bacteria and unicellular eukaryotic 
organisms enjoy cognitive and sensory complexities, underlain by 
numerous neuronal proteins and sensors, implicate that we need to 
reconsider the evolutionary origin of neurosciences.

As the Aristotelian heritage is robust, due to long history of 
sciences,82,135 it is obvious that this paradigm shift in biology will be 
as complicated as that accomplished in physics when the Aristotelian 
geocentrism world-view was abandoned in favor of the heliocen-
trism. But this time also the human nature is directly involved and 
questioned. Science is inevitably subjective human activity, which 
has produced our current anthropocentric world-views. As a conse-
quence, this biological paradigm-shift necessary to escape from the 
Aristotelian trap might turn out to be even more complicated and 
difficult one as the physical paradigm shift. In fact, it started with 
Charles Darwin some 150 years ago and is still not completed.

As Michael Pollan stated, the ‘disease of human self-importance’ 
is firmly rooted in our scientific thinking. We still did not ‘digested’ 
lessons from the Darwinian revolution 150 years ago that humans 
are only ‘one fiber in the fabric of life’ in which evolution and 
co-evolution is working on us in the same way as it is working on 
all others.136 Looking at the outside world from the ‘plant perspec-
tive’107 reveals that plant-human interactions are much more 
complex providing effective ‘cure’ for the disease of ‘human self-
importance’.137 Plants provide reward to their pollinators in form 
of attractive flowers and tasteful foods. Crop plants such as wheat, 
maize, and rice belong to evolutionarily most successful species on 
the Earth. Co-evolution of humans with plants, as well as existence 
of numerous psychoactive mind-altering plant substances suggest 
that plants contributed significantly to our evolution and that plants 
may actively interfere into our sensory faculties. In fact numerous 
plant substances are powerful enough to change our sensory experi-
ences and to modulate our world-view. Recent discovery of cannabis 
from 2700-year-old Yanghai Tombs in China reveal that ancient 
human civilizations employed psychoactive plants138 which can be 
expected to have shaped their cultures significantly.139 In future, we 
should be open minded to investigate these aspects as they might tell 
us more not only about plants but also much more about the human 
nature too.
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It was Galileo Galilei who first made clear statements that our 
human senses allow us only subjective perceptions.140,141 With this 
view, which contrasted strongly with the classical Aristotle-based 
tradition that human senses are objective attributes, Galileo can be 
considered as father of the modern neurosciences.140,141 Therefore, 
we should be aware that any living unit equipped with complex 
sensory systems and organs is ‘constructing’ its own world-view 
which might be radically different, but principally not better or 
worse, from our human-specific world views.

Note

A glossary of terms can be found at:
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