
A
cc

ep
te

d 
A

rti
cl

e
Class-modeling approach to PTR-TOFMS data: a peppers case study 

 

Cosimo Taiti1, Corrado Costa2*, Paolo Menesatti2, Diego Comparini1, Nadia Bazihizina1, Elisa 

Azzarello1, Elisa Masi1, Stefano Mancuso1 

 

1 Università degli Studi di Firenze, Dipartimento di Scienze delle Produzioni Agroalimentari e 

dell’Ambiente – Viale delle Idee, 30, 50019 – Sesto Fiorentino (FI), Italy. 

2 Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di ricerca per l’ingegneria 

agraria – Via della Pascolare 16, 00015 Monterotondo scalo (Rome), Italy. 

 

 

* Corresponding author: Corrado Costa - Consiglio per la Ricerca e la sperimentazione in 

Agricoltura, Unità di ricerca per l’ingegneria agraria – Via della Pascolare 16, 00015 Monterotondo 

scalo (Rome), Italy - Phone +39-0690675214 - Fax +39-0690625591 - E-mail 

corrado.costa@entecra.it 

 

 

 

 

 

 

 

 

 

 

 

This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process, which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1002/smj.6761 

 

This article is protected by copyright. All rights reserved.					



A
cc

ep
te

d 
A

rti
cl

e
 

ABSTRACT 

BACKGROUND: Proton Transfer Reaction-Mass Spectrometry (PTR-MS), in its recently 

developed implementation based on a time-of-flight mass spectrometer (PTR-TOFMS), was used to 

rapidly determine the volatile compounds present in fruits of Capsicum spp. RESULTS: We 

analyzed the volatile organic compounds emission profile of freshly cut chili peppers belonging to 3 

species and 33 different cultivars. PTR-TOFMS data, analyzed with appropriate and advanced 

multivariate class-modeling approaches, perfectly discriminated among the three species (100% of 

correct classification in validation set). Variable Importance in Projection scores was used to select 

the 15 most important volatile compounds in discriminating the species. Particularly the best 

candidates for Capsicum species were compounds with measured m/z of 63.027, 101.096 m/z and 

107.050, which were, respectively, tentatively identified as dimethylsulfide, hexanal and 

benzaldehyde. CONCLUSIONS: Based on the promising results, the possibility of introducing 

multivariate class-modeling techniques, differently from the classification approaches, in the field 

of volatile compounds analyses is discussed. 

 

KEYWORDS: Chili pepper (Capsicum spp.); Proton transfer reaction-mass spectrometry; Volatile 

organic compounds (VOC); PLS-DA; Class-modeling; VIP scores. 

 

INTRODUCTION 

The genus Capsicum of the Solanaceae family is cultivated worldwide as spices, food and medicine 

and includes five main species: Capsicum annuum, C. chinense, C. frutescens, C. baccatum, C. 

pubescens. Two main factors contribute to the flavor perception of the fruits of Capsicum: 

pungency and aroma, and these are associated to the fruit volatile compounds. Over the last 

decades, consumers have become more demanding in term of experiencing new aromas and flavors, 

and therefore the profile of fruit volatile compounds is now considered an important factor in 
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determining fruit quality [1]. In this context, the characterization and evaluation of Capsicum's 

species is of particular importance for gene bank curators, since these species present a wide 

variability yet to be fully known and exploited [2,3]. The Capsicum species are traditionally 

classified by morphological descriptors or related traits [3], with the following traits being the main 

taxonomic descriptors: i. flowers morphology, including the flower color; ii. calix constriction; and 

iii. number of floral for axil [2,3]. Although fruit volatile composition is often not considered an 

important factor for fruit classification, it has recently emerged that the different compositions of 

fruit volatiles compounds could be used to separate different Capsicum species [4]. 

Plants emit a multitude of volatile organic compounds (VOCs) in various tissues, and these 

are fundamental for the characterization of agro-industrial products, including fruits, and for 

consumer choice [5,6]. Most importantly, fingerprinting of VOCs present in fruits can be used for 

non-destructive characterization and identification of the different cultivars (e.g. strawberry fruits) 

[5]. Although currently gas chromatography–mass spectrometry (GC-MS) is the technique 

commonly used to identify VOCs, as it is a highly sensitive tool for VOCs detection (with suitable 

pre-treatment and pre-concentration stages, GC-MS systems can reach detection limits as low as 0.1 

pptv), this technique is expensive and time consuming [6, 7]. Furthermore, GC-MS suffers from a 

relatively low time resolution and has an elevated risk of artefacts. Therefore an alternative physical 

tool, the PTR-MS was initially developed to study VOCs in air [8, 9] and was later on extended to 

food chemistry [10]. More recently, the evaluation of organic volatile compounds emitted by food 

has improved thanks to a new version of the PTR-MS that has been coupled with a time of flight 

mass analyser (PTR-TOFMS) with a PTR ion source and drift tube reaction chamber, which 

enables a precise, highly sensitive and real-time monitoring of many volatile compounds [11]. One 

of the advantages of the PTR-TOFMS is the enhanced analytical information provided, which allow 

a high mass resolution power (m/Δm~4000) that enables to separate between many isobaric 

compounds [7, 12]. Since its development, the PTR-TOFMS has been used in a wide range of 
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fields, including environmental sciences, food monitoring [13] and VOC emissions from plants 

during various stress conditions [14, 15].  

 

As stated by Forina et al [16], multivariate class-modeling techniques answer to the general 

question of whether an object O, stated of class A, really belong to class A. This is a typical question 

that is addressed in the traceability of Protected Denomination of Origin (PDO) foods or in 

multivariate quality control. On the contrary, the classification techniques assign objects to one of 

the classes in the problem. For example, linear Discriminant Analysis assigns an object to the class 

with the maximum posterior probability [5]. However, these classification techniques are not very 

useful in the control of quality, variety, origin or genuineness of a sample when considering their 

VOC profiles [17, 18]. Nevertheless, almost all research papers on food control use classification 

techniques; furthermore, also when a class-modeling technique is applied, the attention is focused 

on its classification performance rather than on its modeling characteristics. Class-modeling 

techniques calculate the “prediction probability” with a classification threshold for each modeled 

class. Using a class-modeling approach, it is possible to attribute objects not only into one or more 

classes but also to none (i.e., in this case, the object is an outlier) [19]. 

The aim of the present work is the application of a Partial Least Squares Discriminant Analysis 

(PLS-DA) class-modeling approach based on volatiles data collected with the PTR-TOFMS to 

correctly classify different cultivars of pepper according to their species. In particular, we studied 

the VOC emission profile of 33 cultivars belonging to 3 different Capsicum species, as an an 

exercise to highlight the high potential of the PTR-TOFMS, when coupled with appropriate and 

advanced multivariate class-modeling approaches, in the field of volatile compounds analyses. 

 

EXPERIMENTAL 

Plant Material 
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A collection of chili peppers belonging to 3 species and 33 cultivars was analyzed (Table 1). For 

each cultivar 5 plants were grown. The seeds were placed in a substrate of peat and compost in 

separated jars and were maintained in darkness at 26°C until germination. Seedlings were moved to 

a greenhouse (25/18°C day/night) and were transplanted into larger pots 30 days after germination. 

Each variety was divided into blocks inside the greenhouse to limit the occurrence of cross-

pollination; furthermore, given that the main effects of cross-pollination are generally present in the 

subsequent generations, its influence has not been considered. 

For the VOC emission analyses, 3 uniform plants were selected and subsequently the uniform sized 

fruits were collected when the optimal ripening stage, based on the color changes (100% of 

coloration), was reached. All analyses were conducted at room temperature (25°C ±1). 

 

PTR-TOFMS and VOC Emissions 

VOCs emitted from chili peppers were analyzed with a PTR-TOFMS 8000 (Ionicon Analytik 

GmbH, Innsbruck, Austria). For a detailed explanation of the system see Lindinger et al. [8] and 

Brilli et al. [12]. Briefly, 20 g of freshly cut chilli pepper (including the seeds) were inserted in a 

glass jar (500 mL at 25°C, with a dynamic headspace flushing flow rate of 200 ml/min) equipped 

with two Teflon inlet and outlet tubes on opposite side, which were, respectively, connected to a 

zero-air generator (Peak Scientific) and the PTR-TOFMS. VOCs were then measured by direct 

injection of the head space mixture into the PTR-TOFMS drift tube via a heated (60°C) peek inlet 

tube with a flow rate of 100 sccm for 5 min. Measurements were carried out as previously described 

in Cappellin et al. [18] using a PTR-TOFMS in its standard configuration. The sampling time for 

each channel of TOF acquisition was 0.1 ns, amounting to 350,000 channels for a mass spectrum 

ranging up to m/z=250. The conditions in the drift tube were: drift voltage 600 V, temperature 

110°C, pressure 2.25 mbar, extraction voltage at the end of the tube (Udx) 32V. Compounds with 

an exactly known mass such as 1,4 dichlorobenzene (m/z = 146.976) and 1,2,3 trichlorobenzene 

(m/z = 180.937) were continuously, and together with other known low mass ions, used for a 
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precise conversion of ‘‘time-of-flight’’ into ‘‘mass-to-charge’’ ratio (m/z) in order to assign the 

exact mass scale and the sum formula of all ions during VOC analysis [12]. 

For the data analysis, the average of the signal intensity was used. The external calibration 

automatically done by the acquisition program achieved a mass accuracy of 0.001 Th for the 

considered mass range, which was in most cases sufficient for sum formula identification. Spectra 

raw data (averaged count rate of the analytes recorded expressed in number of counts for second, 

cps) were acquired with TofDaq software (Tofwerk AG, Switzerland). For each sample, the average 

data, resulting from the last 30 consecutive seconds of the measurement, were extracted after 3 

minutes from the beginning of the measurements. All spectra were corrected for count losses due to 

the detector dead time, applying Poisson correction in the DAQ settings of TofDAQ configuration 

options. Background measurements were run before every set of experiments by sampling the 

empty glass jar and were always subtracted before VOCs emission rates calculation. 

 

Class-Modeling Approach 

A Partial Least Squares Discriminant Analysis (PLS-DA) approach was used in order to predict the 

species identity of each sample. PLS-DA consists of a classical PLS regression analysis where the 

response variable is categorical (y-block; replaced by a set of dummy variables describing the 

categories, i.e. species identity), thus expressing the class membership of the statistical units [20-

22]. The model included a calibration phase and a cross-validation phase. The prediction ability of 

PLS-DA also depends on the number of latent vectors (LV) used in the model. The x-block were 

pre-processed using a autoscale algorithm (i.e. centers columns to zero mean and scales to unit 

variance). For each sample a prediction probability to belong to each of the modeled y-block 

categories (i.e., species identity) was calculated (modeling characteristics sensu [16]). Threshold 

values of the prediction probability were calculated for each y-block category. The threshold values 

are calculated using the observed distribution of predicted values and Bayesian statistics. By this 

way, an object could belong to none (outlier), one or more than one category, if the prediction 
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probabilities for each category exceed the threshold values. This analysis also expresses the 

statistical parameters indicating the modeling efficiency in terms of sensitivity and specificity of the 

parameters. The sensitivity is the percentage of the samples of a category accepted by the class 

model. The specificity is the percentage of the samples of the categories different from the modeled 

one, which is rejected by the class model. Generally, the trend of the residual errors is decreasing in 

the calibration phase (root mean square error of calibration—RMSEC) and increasing in the cross-

validation phase (root mean square error of cross-validation RMSECV). The entire dataset was 

subdivided into two groups: (1) 90% of specimens for the class modeling and cross-validation, and 

(2) 10% of specimens for the independent test (i.e., validation), optimally chosen with the Euclidean 

distances based on the algorithm of Kennard and Stone [23] that selects objects without the a priori 

knowledge of a regression model (i.e., the hypothesis is that a flat distribution of the data is 

preferable for a regression model). For each LV models with the mean higher performance value 

were considered to be more robust (robustness sensu [24]). Moreover, the Variable Importance in 

Projection (VIP) scores was calculated [25]. VIP scores estimate the importance of each variable, 

for each species, in the PLS-DA model. Variables with VIP scores significantly higher than 1 (one) 

are of great importance and might be good candidates for indicators for species selection. The 

models were developed using a procedure written in the MATLAB 7.1 R14 environment. 

 

RESULTS 

Peak extraction allowed the detection of more than 700 peaks in the range of measured masses 

(m/z=30-250), derived from the protonation of various VOCs, with an estimated headspace 

concentration higher than 1 ppbv. The average mass spectra obtained for each variety (in the range 

of m/z=30-250) were classified according to the different species, as displayed in Figure 1. 

Table 2 shows the performance indicators of the model with 5 LVs selected as the more robust. It is 

possible to observe how the model could perfectly discriminate among all the samples of the three 

species, both in the model/validation dataset and in the independent test set (percentages of correct 
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classification). Also the specificity and sensitivity were both 100%, with the mean classification 

error equal to zero and a very low RMSEC (0.35). Figure 2 shows the plot of the scores of the 99 

samples (3 replicates for each cultivar), grouped following their species identity, on the first three 

LV was represented. Considering that the whole model is composed by 6 LVs, the first three ones 

(x-block 63.3%; y-block 47.1% of cumulated variance) could still return a partial separation among 

the groups. For each species identity, the threshold values, calculated using the observed 

distribution of predicted values and Bayesian statistics. are equal to 0.08 (C. annuum), 0.19 (C. 

baccatum) and 0.05 (C. chinense). Considering the prediction probabilities, all the samples, both in 

the training/validation dataset and in the test dataset, exceed the threshold values only of its species 

identity. That means that no sample belonged to more than one species category, or was an outlier. 

Table 3 reports these protonated masses together with the molecular formula, the tentative of 

identifications and the VIP scores for each species. Bibliographic citations listed in Table 3 refer to 

volatile compounds identified in other studies on pepper by means of gas chromatography and 

showing the same molecular mass. 

 

DISCUSSION AND CONCLUSIONS 

PTR-TOFMS is a tool, with a great potential in a wide range of fields, including food monitoring 

[13]. Nevertheless, the huge amount of data produced by the instrument can be underexploited and 

with the present paper we wants to introduce the concept of multivariate modeling, in particular 

using a class-modeling approach, in the field of volatile compounds analyses to further improve 

PTR-TOFMS data mining. On the basis of literature data, the detected peaks with VIP scores higher 

than 1 among the different species were identified (Table 3). In order to have more reliable results, 

we considered only VOCs cited in the literature data on peppers (see Table 3 for major details on 

the references), taking into account of the available fragmentation patterns of pure standards [26]. 

The only exception was the compound with measured protonated m/z=71.049, tentatively identified 
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as methyl vinyl ketone or methacrolein, as it is produced by plant leaves through the oxidation of 

isoprene [12, 27]. 

 

Volatile compounds with higher VIP value might be good candidates as indicators for species 

selection. In particular the chemical species with the higher significance both for C. baccatum and 

C. annuum were C2H6S (measured m/z = 63.027), C6H12O (measured m/z = 101.096) and C7H6O 

(measured m/z = 107.050), while for C. chinense are C2H6S (measured m/z = 63.027), C11H16 

(measured m/z = 149.133) and C9H14N2O (measured m/z = 167.219). The five volatile compounds 

listed above possibly refer to the following molecules: dimethylsulfide [28], hexanal [29, 30], 

benzaldehyde [31, 32], ectocarpene [28], 2-isobutyl-3-methoxypyrazine [24, 27]. Dymethilsulfide 

showed the higher VIP score for the classification of C. annuum and C.baccatum. This compound 

has been previously measured by PTR-TOFMS [32] and reported, by using GC-MS, as a typical 

volatile emitted by C. baccatum [28], as clearly shown in figure 3. Carbonyl compounds, in 

particular those with measured m/z= 87.045, 101.096, and 107.050 were also found to have a high 

VIP score (Tab. 3); these compounds are likely to correspond respectively to 2,3-butanedione, 

benzaldehyde and hexanal, which are chemical compounds typically produced by enzymatic action 

upon tissue destruction [30, 31]. Furthermore the analysis highlighted other two important carbonyl 

compounds with measured m/z= 99.081 and 117.093, tentatively attributed to cis-3-hexenal and 

hexanoic acid, which are among others possible carbonyl compounds produce by Capsicum species 

[28, 33]. 

 

Terpenoids (measured m/z= 137.133 and 181.250), sesquiterpenoids (m/z= 205.195) and the 

compounds with m/z= 167.219 also emerged as good candidates as indicators for species selection 

(Tab. 3). Indeed, other studies conducted with gas chromatography-mass spectrometry showed the 

presences of different type of terpenoids and sesquiterpenoids in Capsicum species [4, 24, 26], and 

cubebene, copaene and β-caryophyllene have been shown to be common sesquiterpenes in the 
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Capsicum genus whereas the most common terpenes are limonene, pinene and δ³-carene [4, 28, 30, 

31]. In particular the chemometric analysis identified the ion with a measured m/z=181.250 as an 

important mass for the discrimination between Capsicum species. This ion was tentatively 

identified as the dihydroactinidiolide, a volatile terpene already reported in peppers [34, 35]. 

Finally, the chemometric analysis highlighted several nitrogen compounds, but only the ion with 

measured m/z= 167.219, identified as 2-isobutyl-3-methoxypyrazine [28] showed a high VIP score 

value. Pyrazine and other alkyl-methoxypirazine have been found to be important compounds in the 

Capsicum genus [30]; in particular, it has been shown that 2-isobutyl-3-methoxypyrazine is a 

chemical compounds produced in C. annuum which is associated with typical fresh green pepper 

flavor, and this compound has been used as an aroma descriptor of Jalapeno, Anaheim and Fresno 

cultivar [31]. 

 

VOCs fingerprinting with the PTR-TOFMS is a tool with a great potential, but due to the huge 

amount of data produced by the instrument there is the risk to underexploited them, limiting the 

potential of the instrument. There is a limited number of works that have explored the data provided 

by the PTR-TOFMS in a multivariate way [18]. As reported by Costa et al. [19], it is important to 

distinguish two main analytical approaches for multivariate supervised techniques: modeling and 

classification. For the modeling approach, it is possible to attribute objects not only into one or 

more classes but also to none (i.e. in this case, the object is an outlier). Moreover, modeling 

techniques calculate the “prediction probability” with a classification threshold for each modeled 

class. In the present work for the first time we applied such approach, which enabled us to further 

exploit the whole potentiality of the PTR-TOFMS and to have perfect classification results in both 

training and validation phases. PTR-TOFMS analysis together with the class-modeling approach 

presented here, within the food sector could aim to improve the i. food quality control [11] through 

aromatic profile, ii. food safety (such as biological contamination) and iii. food traceability 

integrated with infotracing systems [31] for the PDO. Thus from an applicative point of view, in 
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food science and technology, PTR-TOFMS offers the possibility to use VOCs spectra as 

fingerprints to rapidly identify food samples; therefore, this tool could be used as an MS-e-nose, as 

an implementation of an electronic nose based on a mass spectrometer [7]. 

 

In the present work, fingerprinting of the volatile compounds emitted by chili pepper fruits enabled 

us to perfectly discriminate among the three specie; these results suggests that combining the 

dataset provided by the PTR-TOFMS with multivariate class-modeling techniques can be used for 

the rapid and non-destructive classification of the fruits. By using PTR-TOFMS analysis we were 

been able to detect in the volatile fraction more than 200 peaks, identifying significant differences 

both quantitative and qualitative among the three different species. In conclusion, volatile 

compounds involved in the creation of aroma and flavor typical of the chili species C. annuum, C. 

baccatum and C. chinense were fingerprinted using PTR-TOFMS in order to discriminate among 

the three species. The species analyzed were perfectly discriminated using a PLS-DA modeling 

approach; interestingly it was shown that only 15 volatile compounds were sufficient to characterize 

the different aromatic profile of the three species. By generalizing the results obtained with chili 

peppers in the present work, we hope to encourage the introduction of multivariate modeling 

techniques in the field of volatile compounds analyses. 
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TABLES 
 

TABLE 1: List of the genotypes studied and their species membership 

Code 
Number Species Variety or common 

name 
1 C. annuum Adorno 
2 C. annuum Amoremio 
3 C. annuum Akrata 
4 C. annuum Arlecchino 
5 C. annuum Black Pearl 
6 C. annuum Bolivian Rainbow 
7 C. annuum Cancun 
8 C. annuum Cascabel 
9 C. annuum Cayambé 
10 C. annuum Ciliegino 
11 C. annuum Cayenna Red 
12 C. annuum Dolcevita 
13 C. annuum El Fuego 
14 C. annuum Explosive ember 
15 C. annuum Fuego caliente 
16 C. annuum Grappolino 
17 C. annuum Passerotto 
18 C. annuum Pyramid 
19 C. baccatum  Bird Aji 
20 C. baccatum  Bishon Crown 
21 C. baccatum  Brasileiro 
22 C. baccatum  Campana 
23 C. baccatum  Hot Lemon 
24 C. baccatum  Jamy 
25 C. baccatum  Rocotillo 
26 C. chinense Carioca 
27 C. chinense Cheiro 
28 C. chinense Fatalii 
29 C. chinense Habanero chocolate 
30 C. chinense Habanero Red Caribbean 
31 C. chinense Naga Morich 
32 C. chinense Peruvian Orange 
33 C. chinense Scotch Bonnet Red 
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TABLE 2: Characteristics and principal results of the PLS-DA model. N is the number of samples. 

n° units (Y-Block) is the number of species to be discriminated by the PLSDA. n° LV is the number 

of latent vectors for each model. Random Probability (%) is the probability of random assignment 

of an individual into a unit. Ca = C. annuum, Cb = C. baccatum; Cc = C. chinense. 

 

N 99 

n° units (Y-block) 3 

n° LV 6 

% Cumulated Variance X-block 63.3 

% Cumulated Variance Y-block 47.1 

Mean Specificity (%) 100.00 

Mean Sensitivity (%) 100.0 

Random Probability (%) 33.33 

Mean Class. Err. (%) 0.00 

Mean RMSEC 0.35 (0.56 Ca; 0.26 Cb; 0.23 Cc) 

Mean RMSEP 0.47 (0.80 Ca; 0.36 Cb; 0.26 Cc) 

% Corr. Class. Model 100 

% Corr. Class. Independent Test 100 
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TABLE 3: Protonated masses having VIP scores greater than 1, molecular formula and references 

which already evidenced the importance of each volatile compound in chilli peppers. 

Protonated 
measured 

m/z 

Protonated 
chemical 
formula 

Protonated
theoretical 

m/z 

Tentative 
identification 

VIP scores 
References C. 

annum 
C. 

chinense 
C. 

baccatum 

59.048 C3H7O+ 59.049 2-propanone 1.56 1.4 1.88 [31] 

63.027 C2H7S+ 63.026 Dimethylsulfide 2.23 1.52 3.02 [29] 

71.049 C4H7O+ 71.049 Methyl vinyl ketone, 
methacrolein 1.33 0.85 1.64  [20, 28]  

81.070 C6H9
+ 81.069 Alkyl fragment 1.77 1.21 1.91  [27] 

87.045 C4H7O2
+ 87.044 2,3-butanedione 1.36 1.03 1.52  [31, 32] 

 
95.050 C6H7O+ 95.049 Phenol 1.46 0.65 1.98  [31] 

99.081 C6H11O+ 99.081 cis-3-Hexenal 1.25 0.77 1.65  [30] 

101.096 C6H13O+ 101.096 Hexanal 1.34 0.87 1.99  [31, 36] 

107.050 C7H7O+ 107.049 Benzaldehyde 1.47 1.23 2.08  [32] 

117.093 C6H13O2
+ 117.091 Hexanoic 

acid/hexanoates 1.62 1.07 1.98  [31, 34] 

137.133 C10H17
+ 137.132 Monoterpenes 1.32 0.53 1.49  [29-31] 

149.133 C11H17
+ 149.132 Ectocarpene 1.12 1.52 0.88  [29] 

167.219 C9H15N2O+ 167.228 2-isobutyl-3-
methoxypyrazine 0.87 1.51 0.82  [29, 31] 

181.250 C11H17O2
+ 181.254 Dihydroactinidiolide 

(terpene) 0.85 1.22 0.39  [35, 36] 

205.195 C15H25
+ 205.195 Sesquiterpenes 1.3 1.38 0.84  [1, 29, 30] 
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FIGURE CAPTIONS 

 

Figure 1. Low mass region of the average PTR-TOFMS spectra in 3 different varieties 

belonging to three different species (Cayenna, Capsicum annuum; Hot lemon, C. 

baccatum; Naga Morich, C. chinense). 
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Figure 2: Representation of the peppers’ samples on the first three axes of the PLS-DA 

(LV) model composed by 6 LVs. 
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Figure 3: Example of the different VOC emission rates in the different species: emission 

rate of dimethylsulfide (m/z= 63.027) in freshly cut chilli pepper fruits from 3 different 

varieties belonging to three different species (Cayenna, Capsicum annuum; 

Nagamorich, C. chinense; Hot lemon, C. baccatum). Different colours indicate different 

species. 
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