
Measurement 53 (2014) 101–116
Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/ locate/measurement
Forward and inverse modelling approaches for prediction of
light stimulus from electrophysiological response in plants
http://dx.doi.org/10.1016/j.measurement.2014.03.040
0263-2241/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +44 (0)7448572598; fax: +44 (0)2380
593045.

E-mail addresses: skc105@ecs.soton.ac.uk (S.K. Chatterjee),
sg5g10@ecs.soton.ac.uk (S. Ghosh), sd2a11@ecs.soton.ac.uk (S. Das),
veronica.manzella@gmail.com (V. Manzella), andrea.vitaletti@w-lab.it
(A. Vitaletti), elisa.masi@unifi.it (E. Masi), luisa.santopolo@unifi.it
(L. Santopolo), stefano.mancuso@unifi.it (S. Mancuso), km3@ecs.soton.
ac.uk (K. Maharatna).
Shre Kumar Chatterjee a, Sanmitra Ghosh a, Saptarshi Das a,⇑, Veronica Manzella b,c,
Andrea Vitaletti b,c, Elisa Masi d, Luisa Santopolo d, Stefano Mancuso d, Koushik Maharatna a

a School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
b WLAB S.r.L., via Adolfo Ravà 124, 00142 Rome, Italy
c DIAG, SAPIENZA Università di Roma, via Ariosto 25, 00185 Rome, Italy
d Department of Agri-food Production and Environmental Science (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino, FIorence, Italy
a r t i c l e i n f o

Article history:
Received 27 November 2013
Received in revised form 13 March 2014
Accepted 25 March 2014
Available online 4 April 2014

Keywords:
Dynamical modelling
Environment prediction
Inverse model
Plant electrical signal
Statistical estimators
System identification
a b s t r a c t

In this paper, system identification approach has been adopted to develop a novel dynam-
ical model for describing the relationship between light as an environmental stimulus and
the electrical response as the measured output for a bay leaf (Laurus nobilis) plant. More
specifically, the target is to predict the characteristics of the input light stimulus (in terms
of on–off timing, duration and intensity) from the measured electrical response – leading
to an inverse problem. We explored two major classes of system estimators to develop
dynamical models – linear and nonlinear – and their several variants for establishing a
forward and also an inverse relationship between the light stimulus and plant electrical
response. The best class of models are given by the Nonlinear Hammerstein–Wiener
(NLHW) estimator showing good data fitting results over other linear and nonlinear
estimators in a statistical sense. Consequently, a few set of models using different func-
tional variants of NLHW has been developed and their accuracy in detecting the on–off
timing and intensity of the input light stimulus are compared for 19 independent plant
datasets (including 2 additional species viz. Zamioculcas zamiifolia and Cucumis sativus)
under similar experimental scenario.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

It was discovered by Burdon–Sanderson in 1873, that
plants exhibit bioelectrical activity [1]. In 1926, J.C. Bose
isolated the vascular bundles of a fern to show that physi-
ological events, such as those present in animal nerves,
triggered excitation which travels as electrical signals
within plants [2]. In the recent years, it has been observed
by botanists that electrical signals, in naturally occurring
plants are generated due to different physiological
processes induced by external stimuli [3]. Such stimuli
could be in the form of change of light intensity [4–6], tem-
perature [7,8], humidity [9], introduction of gas [10],
mechanical wounding [11] etc. A detailed analysis of plant
electrophysiological systems is documented in [12].
Although there were a few attempts to understand the
nature of such electrical signals using signal processing
techniques [13–20], rigorous models correlating the
characteristics of such signals with the externally applied
stimuli are yet to be developed.
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When compared to the wealth of existing knowledge of
animal electrophysiology, with respect to stimulus
induced response phenomenon, the same for plants are
still evolving. Consequently there exists little knowledge
about how the electrical response in plants changes in a
stimulus-specific way and how the changes of electrical
responses could be quantitatively associated with the
stimulus. A model describing such behaviour will allow
us to quantitatively associate different environmental
parameters to the electrophysiological responses of differ-
ent plants. Thus such a model will provide invaluable
information which will augment the existing technologies
present in agriculture and environment monitoring appli-
cations. From a system theoretic perspective such a model
could be formulated by considering plants as dynamical
systems and observing their input–output (stimulus-elec-
trical response) relationships. The mechanisms of light-
stimulus induced electrical signal generation in plants are
quite well-researched in the plant physiology community.
Roelfsema et al. [21] reported the findings of three physio-
logical states of the guard cells, which are electrically iso-
lated from other plant cells. These states were found to
be far-depolarised, depolarised and hyperpolarized. The
depolarised guard cells were found to extrude potassium
(K+) ions through the outward rectifying channels whereas
the hyperpolarized cells let in K+ ions through inward rec-
tifying channels. The guard cells were reportedly switching
from depolarised to hyperpolarized state upon incidence of
light and vice versa for a light to darkness transition. The
average membrane potential was found to be �41 mV dur-
ing depolarisation and �112 mV during hyperpolarisation
as per the study by [21]. Such a mechanistic model essen-
tially describes the electrical potential generation process
in single plant cell whereas the collective behaviour of
such electrical potentials could be observed in a realistic
experimental scenario. In order to model the global effect
of such electrical signals generated by a tissue (several
such cells) in a plant due to external light excitation, we
have tested many linear and nonlinear statistical estima-
tors to best describe the plant electro-physiology using a
dynamic model.

In principle, modelling input–output relations of any
dynamical system could be done in two ways. The first
method involves a mechanistic approach where in detailed
understanding of the characteristics of physical interac-
tions between the system’s components with the input
stimuli are exploited. The second method involves, consid-
ering the system as a black-box and statistically formulat-
ing the functional relationship by observing the output
response to a given set of input stimuli. While the first
approach is mostly desirable as it gives a complete under-
standing of the internal operation of the system, the second
approach, which is often known as system identification, is
more suitable for developing a working solution when the
knowledge about the interactions between the system
components is not adequate. For modelling the electrical
response of plants under external stimuli, from the per-
spective of the level of existing knowledge, the system
identification approach appears to be most appropriate
since the knowledge about internal physiological processes
in plants given a set of input stimuli is still not adequate.
In order to explain the plant electrical response due to
light stimulus from a fundamental perspective, several
mechanistic models have been proposed by plant scien-
tists. Models proposed in [22–25] and [26] explain the gen-
eration of an action potential and variation potential
respectively. In [3], several models describing the underly-
ing generation process of action potentials and variation
potentials in plants are reviewed. These models essentially
describe the generation of different ion currents across a
cell and how these currents lead towards a transient depo-
larisation of the membrane potential. Furthermore, the
interaction of these currents with the transmembrane volt-
age is described using either a linear, ohmic or a nonlinear
relationship such as the Goldman–Hodgkin–Katz equation
[27]. The stimulus is related in these models through stim-
ulus induced calcium current that triggers further ionic
currents. Also it is worth noting that none of these models
quantify the time course of the stimulus intensity. It is for
the purpose of modelling the phenomenon of stimulus dri-
ven electrical response. Thus an attempt to construct a
mechanistic model is futile, as the relationship between
the electrical responses recorded from the surfaces of
plants and that from the cell is not well understood. Fur-
thermore, morphologically a surface recording of the stim-
ulus driven electrical response may show traces of action
potential or a variation potential or a combination of both
[28]. Thus, a mechanistic model which might describe and
characterise all these traits would induce complexities that
might hinder the applicability of the model. Motivated by
these constraints imposed on mechanistic modelling, we
have taken a different approach for model construction.
In our approach, rather than a priori assuming the relation-
ship between the stimulus and the response from the cog-
nisance of plant physiology, we try and infer the
relationship from the data (time course of response and
stimulus traces). This approach is known as the black box
modelling wherein the term black box in essence captures
the opacity of mechanistic knowledge. An advantage of the
black box modelling approach to the mechanistic counter-
part is that we could also use the data to construct inverse
model which could provide inference of the stimulus from
the observed response. In our knowledge, this work is the
first attempt to construct an inverse model of the stimulus
driven electrical phenomenon in plants. Success of such
inverse modelling would lead us towards developing envi-
ronmental sensing applications using just the voltage
recording from the surface of the plants.

In the present paper, we propose a novel dynamical
model for describing the input–output characteristics of a
bay leaf plant with change of light intensity following the
system identification approach. In essence, the developed
model predicts or detects the change of light intensity
and the time duration for which light falls on the plant
from measured time-varying electrical response data of
the plant. A dynamical model is preferred over a static
model since it takes into account the real-time changes
of the internal state variables of a system expressible using
one or few sets of ordinary differential equations involving
temporal derivatives. Thus a dynamical model is consid-
ered more behavioural in nature than a static algebraic
equation based model and have been preferred in our
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approach in this work. Since from the plant physiological
point of view, the external light stimulus is responsible
for the generation of the electrical response, the problem
we address here is essentially an inverse problem where
the characteristics of the light stimulus needs to be deter-
mined by observing the electrical response signal. Deriva-
tion of such inverse model is very challenging since there
may exist a number of solutions for the same input–output
behaviour. Similar studies on establishing an inverse rela-
tionship using linear and nonlinear system identification
approaches for a real world system have been done in [29].

To address these issues, we applied two different clas-
ses of system identification techniques viz. Linear Time
Invariant (LTI) discrete time estimators and nonlinear dis-
crete time estimators. Then the most accurate model struc-
ture is chosen on the basis of obtained accuracies for
estimating the system’s parameter. Four different linear
Least Square Estimator (LSE) based techniques, viz. Auto-
Regressive eXogeneous (ARX), Auto-Regressive Moving
Average eXogeneous (ARMAX), Box-Jenkins (BJ) and Out-
put-Error (OE) [30] have been used within the LTI frame-
work whereas, Non-linear ARX (NLARX) and Non-linear
Hammerstein Winner (NLHW) [30] estimators have been
considered within the nonlinear estimation framework.
In this paper, we considered the input light stimulus as
the input and the plant electrical response as the output
for the forward modelling, thereby capturing the physical
cause and effect relationship. Whereas with the inverse
model, we tried to establish a causal relationship as a form
of a dynamical model using electrical response as input
and light stimulus as the output. The inverse model was
proposed in order to make a prediction or detection frame-
work to monitor the environment from plant electrical
responses. To the best of our knowledge, this is the first
study of its kind for establishing a forward and inverse cau-
sal relationship between the environment (light) and plant
response. This gives a working solution for detecting the
duration and nature of light inputs by only observing the
electrical response. We have also tested the top three esti-
mator structures, obtained from the rigorous exploration
with light induced electrical signal for the Laurus nobilis
plant on additional 19 different plants (17 Zamioculcas
zamiifolia and two Cucumis sativus plants) under similar
experimental conditions for the forward and inverse mod-
elling, in order to show that these model structures give
faithful prediction of the stimulus.

Rest of the paper is organised as follows. Section 2 pro-
vides a theoretical overview of system identification tech-
niques describing the mathematical preliminaries of
various estimators used in this paper. Section 3 briefly dis-
cusses the experiments for obtaining the plant data under
light excitation and Section 4 describes the proposed
model through comparison of the estimation accuracies
between different estimators. Conclusions are drawn in
Section 5, followed by the references.

2. Theoretical background of forward/inverse dynamical
system modelling and practical challenges

System modelling or identification can be viewed as a
way of mathematically describing a phenomenon with
some physical insight about the system from a measured
input and output data-set. It is regarded as a bridge
between the applications in real world problems and
mathematical theories of model abstraction [30]. The
application end of the spectrum of system modelling
includes future prediction of the input to output character-
istics of a model thus developed. A forward system model,
where the response (output) needs to be related with the
cause (the inputs), is much easier to develop in theory than
developing an inverse model where the inputs are pre-
dicted from the observation of output response as this
may result into one-to-many mapping situation. In
essence, such a forward model will capture the dynamical
characteristics of the response caused due to the excitation
by establishing a physical cause-effect relationship. A sim-
ilar approach by inverting the input and output may not
always indicate physical causation but are capable of pre-
dicting the stimulus by only observing the response [29]
which is adopted in the present study.

In principle, once formulated, a forward model could be
inverted also to produce the inverse model from it. How-
ever, from the perspective of dynamical system theory,
establishing a forward dynamical model (in terms of a
transfer function) first and then inverting the poles and
zeros may not always work if it contains non-minimum
phase zeros (which gets converted to unstable poles of
the inverse model) or possesses highly complex nonlinear
terms which are explicitly noninvertible. Also in most
cases of transfer function estimation for the forward prob-
lem using system identification approaches with any real-
istic data-set, the models are considered to have a proper
transfer function structure i.e. the number of poles being
higher than the number of zeros. This implies that the
inverse model will be an improper transfer function with
more zeros than poles leading to a high pass or differenti-
ator type frequency response, thus leading to huge ampli-
fication of measurement noise in high frequency regions
leading to a low signal to noise ratio (SNR). Therefore, a dif-
ferent approach may need to be adopted for solving the
inverse modelling problem like the present one by invert-
ing the recorded cause and effect, followed by varying the
model structure between these two observed signals in
order to match the cause in a best way. As has been men-
tioned in Section 1, two major classes (and different sub-
classes within each of them) of dynamic system parameter
estimation techniques i.e. linear and nonlinear methods
have been used in the current work for solving the inverse
problem – which in our case, is predicting the characteris-
tics of input light stimulus from the electrical response. In
the following subsections, we briefly describe the theoret-
ical backgrounds of each of these system identification
techniques after describing the main statistical measures
used here for measuring the accuracy of model fitting.
2.1. Least square estimation (LSE) technique for system
identification

Considering the measured output and input of an
unknown system at time t is y(t) and u(t) respectively,
the system can be described by a linear difference equation
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with co-efficient ai; i ¼ 1; . . . ;n and bj; j ¼ 1; . . . ;m as
shown in Eq. (1)

yðtÞ þ a1yðt � 1Þ þ � � � þ anyðt � nÞ
¼ b1uðt � 1Þ þ � � � þ bmuðt �mÞ ð1Þ

where, the estimated system parameter vector (h) and the
measured input–output vector (u) can be given as Eqs. (2)
and (3) respectively.

h ¼ ½a1 . . . an b1 . . . bm�T ð2Þ

uðtÞ ¼ ½�yðt � 1Þ . . .� yðt � nÞuðt � 1Þ . . . uðt �mÞ�T ð3Þ

Using (2) and (3) the system model can be developed
[6], incorporating a modelling error et as represented by
Eq. (4)

yt ¼ f ðut; hÞ þ et; t ¼ 1;2;3; . . . ;N ð4Þ

We aim to find the certain parameter vector ĥ which
minimises the least squared error (S) defined as

S, ¼
XN

t¼1

e2
t ¼

XN

t¼1

yt � f ðut ; hÞð Þ2 ð5Þ

For practically useful case f is linear in the unknown
coefficients h. Hence Eq. (4) can be rewritten as Eq. (6)
and further as Eq. (7) in matrix notation.

yt ¼ uT
t hþ et ; t ¼ 1;2;3; . . . ;N ð6Þ

y ¼ Uhþ e ð7Þ

Now the minimum error equation can be rewritten as
Eq. (8)

S ¼ eT e ¼ ðyT � hT UTÞðy� UhÞ ð8Þ

The estimated value ĥ which minimises S makes the
gradient of S with respect to h as zero.

@S
@h
¼ �2UT yþ 2UT Uh ð9Þ

Hence, the h that makes the gradient of S zero is given
as

bh ¼ ½UT U��1
UT y ð10Þ

Eq. (10) describes the estimated system parameter for
which the minimum of the sum of squared error over the
time interval 1 6 t 6 N is obtained and hence for this rea-
son this method of estimation is called the least square
estimation or LSE algorithm. It is worth noting that bh is
estimated using the measured input and output data and
hence it can be easily inferred that using LSE, a parameter-
ized system model can be developed. This technique hence
is the backbone of all system identification methods.

2.2. A linear system modelling using variants of LSE

The accuracy and the efficiency of the system identifica-
tion process depend on the choice of suitable estimator. In
this section, a few variants of the estimators are discussed
from the perspective of their applicability in system
identification and hence the underlying choice of a certain
estimator [31]. These estimators are derived from the
consideration that the system can be described by a liner
difference equation. A parameterized linear estimator in
essence can be described by the following equation

yðtÞ ¼ Gðq�1; hÞuðtÞ þ Hðq�1; hÞeðtÞ ð11Þ

where y(t) and u(t) are output and input to the system and
e(t) is a zero mean white Gaussian noise and h is the
parameter vector to be estimated, G(q�1, h) is the transfer
function of the deterministic part (excitation to response)
of the system and H(q�1, h) is the transfer function of the
stochastic part (noise to response) of the system. Here q-1

denotes the backward shift operator. Eq. (11) can be
further modified as Eq. (12) which is also known as the
equation error type linear LSE.

Aðq�1ÞyðtÞ ¼ Bðq�1Þ
Fðq�1Þ uðtÞ þ Cðq�1Þ

Dðq�1Þ eðtÞ ð12Þ

where {B, F, C, D} are polynomials in q�1 and represent the
numerator and denominator of the system and noise
model respectively and {A} represents the polynomial con-
taining common set of poles for both the system and noise
model. The block diagram representation of the general-
ised equation error type LSE in Eq. (12) is shown in
Fig. 1(a).

The generalised LSE can be further customised by con-
sidering fewer combinations of the polynomials
{B, F, C, D} at once, which, in its essence, paves the path
towards the choice of a suitable linear estimator for system
identification. An example of such a customisation is the
FIR filter form of the generalised LSE while considering
only polynomial {B}. In the following subsections, a brief
description of four such classes of estimators as few vari-
ants of generalised equation error type LSE are furnished.

2.2.1. Auto Regressive eXogenous (ARX) estimator
The basic structure of the ARX estimator is governed by

Eq. (13).

Aðq�1ÞyðtÞ ¼ Bðq�1ÞuðtÞ þ eðtÞ ð13Þ

The main disadvantage of this structure is that the
deterministic (system) and the stochastic (noise) dynamics
are both modelled with the same set of poles, which may
be unrealistic in many applications.

2.2.2. Auto Regressive Moving Average eXogenous (ARMAX)
estimator

The basic structure of the ARMAX estimator is governed
by Eq. (14).

Aðq�1ÞyðtÞ ¼ Bðq�1ÞuðtÞ þ Cðq�1ÞeðtÞ ð14Þ

The major advantage of the ARMAX structure over the ARX
structure is that it suffices with a better flexibility to model
the exogenous noise dynamics by introducing a moving
average to the white noise. Although the ARMAX estimates
same set of poles, it estimates different set of zeroes for
both the system and the noise components. Thus ARMAX
is useful where the entire system dynamics is dominated
by the stochastic dynamics (noise).
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Fig. 1. Block diagram representation of the linear and nonlinear estimators (a) linear generalised least-square estimator, (b) nonlinear ARX estimator and
(c) nonlinear Hammerstein–Wiener estimator.
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2.2.3. Box-Jenkins (BJ) estimator
The basic structure of the BJ estimator is governed by

the following Eq. (15).

yðtÞ ¼ Bðq�1Þ
Fðq�1Þ uðtÞ þ

Cðq�1Þ
Dðq�1Þ eðtÞ ð15Þ

BJ structure allows the estimation of different set of
poles and zeroes for the system and noise component. This
structure is especially useful when noise enters the system
at a later stage e.g. measurement noise.

2.2.4. Output-Error (OE) estimator
The estimator has the following structure (16).

yðtÞ ¼ Bðq�1Þ
Fðq�1Þ uðtÞ þ eðtÞ ð16Þ

The OE structure estimates the poles and the zeroes of
the system model only and estimation of the noise model
is ignored. This structure can be used when the determin-
istic dynamics dominates the overall system dynamics and
the stochastic dynamics has no significant effect.

2.3. Estimation of nonlinear models

For any nonlinear dynamical system whose input and
output are u(t) and y(t) respectively, can be expressed as
Eq. (17) [32].

yðtÞ ¼ f uðt � 1Þ; yðt � 1Þ; uðt � 2Þ; yðt � 2Þ; � � �ð Þ
ð17Þ

where f(�) is a nonlinear function representing any
arbitrary nonlinearity. The nonlinear black-box identifica-
tion is done using two nonlinear models and the parame-
ters are found out by estimation of squared error as
discussed in the previous section. The nonlinear estimators
are Nonlinear-ARX and Nonlinear-Hammerstein–Wiener
having the nonlinearity in parallel and series connection
respectively with the basic linear blocks. Brief descriptions
of these two classes of estimators are given in the follow-
ing subsections.

2.3.1. Nonlinear ARX (NLARX) estimator
In principle the NLARX is an extension to the linear ARX

estimator. A linear ARX model can be expressed as Eq. (18)
[32]

yðtÞ þ a1yðt � 1Þ þ a2yðt � 2Þ þ anyðt � nÞ
¼ b1uðtÞ þ b2uðt � 1Þ þ bmuðt �mÞ þ eðtÞ ð18Þ

Eq. (13) describes the linear ARX structure which
implies that the current output is predicted as a weighted
sum of past output values and also current and past input
values. Rewriting Eq. (18) as a product form Eq. (19) is
obtained.

ypðtÞ ¼ a1; a2; . . . ; an; b1; b2; . . . ; bn½ �

�
yðt � 1Þ; yðt � 2Þ; . . . ; yðt � nÞ;

uðtÞ;uðt � 1Þ; . . . ;uðt �mÞ

� �T ð19Þ

where yp(t) is the current output and
{y(t � 1), . . ., u(t � 1), . . .} are delayed input and output
variables called the regressors. Instead of weighted sum
as described in Eq. (19) the predicted output yp(t) can also
be mapped using a nonlinear mapping function f(�) which
gives rise to the structure NLARX as described in Eq. (17).
The NLARX is composed of a nonlinear estimator or simply
a nonlinear mapping function part and a regressor part
which in turn is the collection of delayed input and output
variables. The block diagram representation of the NLARX
model is shown in Fig. 1(b) [32]. The nonlinear estimator
can be further composed of a parallel connection of a linear
and a nonlinear function block. The nonlinearity estimator
block maps the regressors to the model output using a
combination of nonlinear and linear functions. Various
nonlinearity estimators, such as tree-partition networks,
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wavelet networks, and neural networks can be selected for
both input and output blocks.

2.3.2. Nonlinear Hammerstein–Wiener estimator
For certain systems when the output of the system

depends nonlinearly with its input, the input–output rela-
tionship can be broken down to a series of interconnected
elements i.e. the system dynamics is represented by using
a linear transfer function and the nonlinearities are cap-
tured using nonlinear mappings of the input and output
[32]. In Hammerstein–Wiener estimator, such an approach
has been adopted where a linear block is connected in
series with two static nonlinearities. The block diagram
representation of the Hammerstein–Wiener structure is
shown in Fig. 1(c) [32]. Here, the predicted output yp(t) is
as follows:

ypðtÞ ¼ h
Bðq�1Þ
Fðq�1Þ f ðuðtÞÞð Þ
� �

ð20Þ

where f(t) is a nonlinear function transforming the input
data. Bðq�1Þ

Fðq�1Þ is a linear transfer function with {B, F} being
rational polynomials similar to the output error model
and h(t) is another nonlinear function that maps the output
of the linear block to the system output.

Here, the input nonlinearity is a static function, imply-
ing that the output at a given time depends only on the
input at that time. The input nonlinearity can be varied
as a sigmoid network, wavelet network, saturation, dead-
zone, piecewise linear function, one-dimensional polyno-
mial, or some user-defined custom network [32]. The input
or output nonlinearity can also be not used at all. The lin-
ear block may be configured by specifying the orders of the
numerator {B} and denominator {F}. Just like the input
nonlinearity is static, the output nonlinearity is a static
function as well. The output nonlinearity may be config-
ured in the same way as the input nonlinearity. In all sim-
ulations presented in this paper, the Levenberg–Marquardt
search method has been used to optimise the parameters
of nonlinear models with a criterion for minimising the
determinant of squared error (det ðeT eÞ).
3. Experimental data and model estimation

This section gives a brief description about the experi-
mental set-up used for the collection of electro-physiolog-
ical signals of one bay leaf (L. nobilis), two cucumber (C.
sativus) and 17 Zanzibar Gem (Z. zamiifolia) plants. These
plants were subjected to a periodic white light stimulus
of different pulse widths. Approximately, 1 week to 2 years
old pot-grown plants of different species were chosen for
the experiments. The measurement of electrical signal
responses of these plants were done by inserting two thin
metallic Electromyogram (EMG) needle electrodes (Bionen
s.a.s) into the petiole and stem at a distance of approxi-
mately 5 cm from each other. The third reference electrode
was inserted into the plant body, nearer to the soil. A dual
instrumentation amplifier (EI-1040) [33] with a gain of 103

was chosen to provide the high input impedance without
altering the actual amplitude of the acquired signal. For
low frequency and low amplitude signals, we require very
high input impedance [34] and very low input bias cur-
rents. The EI-1040 provides an input impedance of 10 GX
and an input bias current of 0.5 nA. The differential output
of the amplifier is provided in input to the USB6008 [35], a
National Instruments Data Acquisition (DAQ) board featur-
ing 8 analog inputs (12-bit, 10 kS/s). The USB6008 was
used for analog to digital (A/D) conversion at a sampling
rate of 1 kHz which was then monitored using LabVIEW
2012 software [36] on a personal computer (PC). Since
bio-electrical signals are usually weaker [37], interference
from an external electromagnetic field could induce a lot
of noise in it. Therefore this setup (excluding the PC) was
placed inside a grounded Faraday cage. The LabVIEW soft-
ware also controls an Arduino microcontroller [38] that
pilots the emission of light possibly according to some
specific patterns (e.g. 5 min of light, 10 min of dark). The
following schematic diagram in Fig. 2(a) shows the connec-
tion of the experimental set-up used to acquire the data on
the signals generated by plants in reaction to light stimuli.

A digital low-pass filter with a cut-off frequency 1 Hz
was provided to eliminate any noise associated with the
measurement, as in [13–18], [39] it is reported that plant
signals are slow oscillatory signals at a very low frequency.
Light Emitting Diode (LED) light source were used for
providing white-light at maximum brightness. Here, the
number of photons used for photosynthesis by plants is
used as basis for measurement of incident light (in
Photo-synthetically active radiation or PAR unit). Similar
experiment and electrophysiological measurements on
cucumber plants can be found in [40]. In order to get a
robust model, the light pulse widths were varied for 20
different plants during the experiment and are given in
Table 1.

Fig. 2(b) shows the experimental setup used to obtain
data for estimating the forward and inverse models.
Aluminium foil was used to cover up the inside of the far-
aday cage from all sides to shield radio-frequency (RF)
interference. The LED bulb was hung from the top to focus
on the intended portion of the bay leaf plant. The elec-
trodes were connected to the instrumentation amplifier
whose output was connected to the DAQ. The DAQ was
connected to the PC, sitting outside the faraday cage,
through a USB cable.

Fig. 3(a) shows the electrical signal responses of the
main dataset when exposed to light pulses of varying
widths. The y-axis of Fig. 3(a) shows both the amplitude
of the electrical responses and the light intensities in two
different axes. Also, 19 independent test datasets are used
in Fig. 3(b) to verify whether a common modelling frame-
work is capable of successfully predicting the stimulus for
different plants as well. It is observed in all the cases that
whenever the light pulse is switched on or off, there is a
clear change in the gradient of the electrical response of
the plant which we are trying to model in the present
work. These electrical responses are induced on the leaf
tissue of the plants. However it is worth noting that extra-
cellular measurements of the membrane potential on a
plant leaf is a mixture of the individual responses of the
guard cells, mesophyll cells and the epidermal cell [15].
The morphology of the membrane potential of these cells
can be different from what have been recorded on the



Fig. 2. (a) Schematics of the connection between the different devices employed to capture the electrical signals generated by plants in reaction to light
stimuli. (b) Experimental setup for a bay leaf plant with white-light excitation.

Table 1
Variations in white-light pulse widths for each dataset (for twenty different plants).

Datasets Plant species Time (sec)

First light pulse Second light pulse Third light pulse Fourth light pulse

Main Laurus nobilis 232.401 293.201 260.001 231.001
Dataset 1 Zamioculcas zamiifolia 147.801 151.801 167.001 148.001
Dataset 2 Zamioculcas zamiifolia 123.2 120 120 –
Dataset 3 Zamioculcas zamiifolia 119.999 119 121 –
Dataset 4 Zamioculcas zamiifolia 140.998 119.998 121 –
Dataset 5, 6, 10–19 Zamioculcas zamiifolia 180 180 180 –
Dataset 7, 8 Cucumis sativus 180 180 180 –
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surface of the leaf tissue. We intent to arrive at a black box
model and thus the collective morphology of the mem-
brane potential found on the tissue will suffice our purpose
of model building.

4. Forward and inverse modelling results using system
identification technique

We now proceed with a notion that the electrical sig-
nals generated from plants has come from a black box sys-
tem without the need of having any prior knowledge of its
internal electrophysiological dynamics. With the measured
stimulus (light) and response (electrical signal) data-set,
dynamical models are developed using the concept dis-
cussed in Section 2. For the present simulation studies,
we used the System Identification Toolbox of MATLAB
[32] to develop the input–output linear and nonlinear for-
ward/inverse models. The idea is to develop a model whose
predicted output best fits the experimentally recorded or
measured output when the same input is applied.

As explained earlier, the inverse modelling is incorpo-
rated to simulate the switching instants of the stimulus,
treating the actual electrical response of the plant as the
input to the model and treating the actual photon flux den-
sity of the light, incident on the plant as an output from the
model. The goal was to find the error between the rise and
fall time of the measured and predicted light pulses. The
error between the peak values of measured and predicted
amplitudes of the photon flux densities of the light pulse
was also compared for different light pulses in the subse-
quent simulations. Various estimator structures from the
linear and nonlinear system identification techniques are
used to model the electrical response of the plants. Since
for the linear estimators, the obtained transfer functions
represent discrete time models in z-domain (z being the
discrete time complex frequency), they can easily be con-
verted to continuous time transfer function models (i.e.
in s-domain with s being the Laplace variable or continu-
ous time complex frequency) by using the well-known
bilinear transform (21) involving the sampling time Ts.

s ¼ 2
Ts

1� z�1

1þ z�1

� �
ð21Þ

The percentage fit as shown in the figures to compare
relative accuracies of different estimators is given by the
normalised root mean squared error (NRMSE) as given in
(22).

fit ¼ 1�
y� by�� ��
y� yk k

� �
� 100% ð22Þ



Fig. 3. Plot of the variations in electrical signal response of the plant with respect to the incident light stimulus (a) main dataset and (b) 19 independent test
datasets.
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where by is the simulated or predicted model output, y
being the measured output and �y is the mean of the output.

In Fig. 4, the plots having the best fits using linear models
for both forward and inverse scenario of the main dataset
are shown while the y-axes shows the respective percentage
fits with gradual increase in pole-zero order for the linear
models. All the four variants of linear LSE i.e. ARX, ARMAX,
BJ, OE are compared indicating that BJ model outperforms
the others in both cases as it is consistently giving higher
percentage accuracy than that with other variants.
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It can also be observed from Fig. 4 that in forward
modelling, the ARX model shows a high variation (or less
consistency) in terms of percentage fit as the order is var-
ied. Whereas, ARMAX, BJ and OE models are consistent
while predicting the output electrical signal, when the
light pulse is fed as the model input. When observing the
case of inverse modelling, ARX model is more consistent
than the other three models with gradual increase in
pole-zero order. The other three models show a sudden
jump in accuracy, predicted in terms of percentage fit, at
a combination of pole-zero order as 7 (i.e. 7 poles, 7 zeros,
and one sample delay).

We now proceed towards similar simulations with
nonlinear estimators like few NLARX variants e.g. wavelet
network, sigmoid network and tree-partition, with grad-
ual increase in the number of regressors for input and
output signal in both forward and inverse modelling
scenario. But it consistently resulted in negative percent-
age fit and thus has not been reported in the paper. On
contrary, the NLHW estimators (with different static
input–output nonlinearity) in most cases yielded good
prediction accuracy which is compared in the following
simulations.

Fig. 5 shows the NLHW model with one dimensional
polynomial as the nonlinearity type. In this case, we have
chosen two pole-zero orders, 5 and 10 and varied the num-
ber of input–output units for each order. While considering
the forward model, we see a lot of variance in percentage
fit between input–output units from 1 through 4. Thereaf-
ter, the percentage fit seems to stabilize till input–output
units till 8 and the fit suddenly drops beyond 8 input–out-
put units. In the inverse modelling case, we see a less
variability in prediction in terms of percentage fit using
pole-zero order of 5 than polynomial order 10.
Fig. 4. Linear models for forward and inver
While using the dead-zone type static nonlinearity as
shown in Fig. 6, we observe a stable prediction during for-
ward modelling for pole-zero orders higher than two.
However for inverse modelling with the same estimator
configuration, it has been found that the variation in the
percentage fit is quite high.

For piecewise linear type static nonlinearity in NLHW
estimator, we varied both the input–output units and also
the pole-zero orders for each case. Thus we obtain a sur-
face plot of percentage fit as a function of these two which
has been shown in Fig. 7. Here the input output units were
varied from 5 through 40, incrementing by 5 at a time. For
each chosen pair of input–output units, the pole zero order
were varied from 1 through 10. When considering forward
modelling, we often see a percentage fit around 50% using
input–output units of 20 onwards and pole-zero order
between 2 and 8. In the case of inverse modelling, we
can see a percentage fit of 50% when the pole-zero order
are between 1 and 6.

In Fig. 8, we can see that using saturation type nonlin-
earity in forward modelling gives consistent prediction
accuracy for pole-zero order above 1. For the inverse mod-
elling case, some sort of consistency in accuracy is shown
for pole-zero order between 2 and 5 and randomly varying
otherwise. When using sigmoid type static nonlinearity,
we can see from Fig. 9 that for forward modelling, percent-
age fit peak has occurred at around 50% when input–out-
put unit is 30 and then decreases thereafter. For inverse
modelling, a peak fit of 80% is noticed for number of units
of 35 and pole-zero order of 10.

Lastly, when we consider wavelet network type of static
nonlinearity (radial function wavelet) in Fig. 10, during for-
ward modelling we notice fairly consistent prediction
accuracy except pole-zero order of 6 and 8. During inverse
se modelling using the main dataset.



Fig. 5. NLHW model with one dimensional polynomial as nonlinearity for forward and inverse modelling using the main dataset.

Fig. 6. Nonlinear model with dead-zone as nonlinearity for forward and inverse modelling using the main dataset.
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modelling we observe a high variability in the prediction
accuracy with gradual increase in pole-zero order.

We now compare the best found forward models from
different variants of linear and nonlinear estimators tested
on the main dataset in Fig. 11 showing the predicted sig-
nals using the NLHW model with piecewise linear type
nonlinearity (10 pole-zero order and 25 input–output
units) and linear BJ model with 6 pole-zero order. For the



Fig. 7. Nonlinear model with piecewise linear as nonlinearity for forward and inverse modelling using the main dataset.

Fig. 8. Nonlinear model with saturation as nonlinearity, for forward and inverse modelling using the main dataset.
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inverse model the best configurations are NLHW with
sigmoid nonlinearity (10 pole-zero order and 35 input–
output units) amongst the nonlinear estimators and BJ
with 7 pole-zero order amongst the linear estimators
which has been shown in Fig. 12. From the best inverse
models the predicted light pulse widths are captured in
terms of the on-time (ton) and off-time (toff).

Next, we calculate the best and worst prediction in
terms of on-time and off-time for the light pulse
(measured versus predicted in the inverse modelling case)
or rise time and fall time for the electrical signal (measured
versus predicted in the forward modelling case). We also
note down the difference between the measured and pre-
dicted peaks of light intensity (inverse) and electrical sig-
nal (forward). The methodology for defining the best and
worst prediction accuracy for the ton, toff and peak amongst
different light pulses are shown in Figs. 13 and 14 respec-
tively for the forward and inverse modelling perspective



Fig. 9. Nonlinear model with sigmoid as nonlinearity, for forward and inverse modelling using the main dataset.

Fig. 10. Nonlinear model with wavelet network as nonlinearity, for forward and inverse modelling using the main dataset.
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with the best and worst values of these three parameters
reported in Tables 2 and 3 respectively. It is evident that
the linear model outputs show low percentage fit in terms
of prediction accuracy when compared to the nonlinear
model.

A positive value on ton or toff denotes the simulated
result occurs before the actual rise and fall time of the
pulse. In some cases using NLARX estimator it yield
negative percentage fit. In such cases a negative value of
ton or toff denotes the simulated value occurs after the
actual event. Similarly, a positive value of the predicted
peak amplitude denotes a higher than actual value while
a negative value denotes a lower than actual value. Figs. 11
and 12 shows the best linear and nonlinear model esti-
mates for forward and inverse modelling cases. The param-
eters mentioned in Tables 2 and 3 for Box-Jenkins model is
nb, nf, nc, nd and nk denoting the order of the polynomials
for the deterministic and stochastic part of the model



Fig. 11. Best linear and nonlinear model estimates during forward modelling using the main dataset.

Fig. 12. Best linear and nonlinear model estimates during inverse modelling using the main dataset.
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and the delay unit respectively as discussed in
Section 2.2.3. Hence the term BJ-7,7,7,7,1 (or BJ-6,6,6,6,1)
in Tables 2 and 3 implies that the values of the parameters
respectively. Similarly for NLHW class of models with
sigmoid and piecewise linear type static nonlinearity, the
number of poles, zeroes and delay-unit is given by
(10,10,1) respectively.

The main dataset (on L. nobilis plant) was used for
rigorous parameter estimation of different model struc-
tures. We then tested the top three estimator settings
(termed as model 1, 2 and 3) for both the forward and
inverse problem which yielded the best accuracies (as
shown in Table 4). Thereafter, we applied the estimator
configurations on 19 other independent datasets (17 Z.
zamiifolia and two C. sativus plants) to validate if they con-
sistently produce acceptable forward and inverse predic-
tion which have been reported in Table 5. It is evident
from Table 5 that even in other datasets, the NLHW models
give positive prediction accuracy. Also, the inverse models
produce comparable accuracy under the same configura-
tion. Although in Fig. 3(a) and (b), there are slightly differ-
ent morphology of electrical signals in different plants, the
forward and inverse estimation accuracies seems promis-
ing. The best setting of the estimators are found from the



Fig. 13. Measuring best and worst prediction of peaks and rise times and fall times of the plant electrical signal (forward modelling) using the main dataset.

Fig. 14. Measuring best and worst prediction of peaks and ton, toff of the predicted light-pulse (inverse modelling) using the main dataset.

Table 2
Best forward model with % fit, ton, toff and peak while tested on the main dataset.

Estimator configuration % fit Best case Worst case

ton (s) toff (s) peak (V) ton (s) toff (s) Peak (V)

Piecewise linear-10,10,1 (nonlinear) 55.81 7 4 0.00079 0.4 2 0.00431
BJ-6,6,6,6,1 (linear) 16.78 9.3 1 0.00111 7.2 6 0.00608
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main dataset and hence some deviation or fall in prediction
accuracy by the same estimator configuration for the other
data-sets are expected.

It is to be noted that we have modelled the plant as a
Single Input Single Output (SISO) system (between light
stimulus and obtained electrical response) and ignored
the impact of changing other factors such as temperature
and humidity on plant electrophysiology, since their varia-
tion within a smaller time window is negligibly small. It is
also well known that strongest correlation of the plant
electrical response is with the rate of change of stimulus.
Here the photosynthetic light intensity is widely varied



Table 3
Best inverse model with % fit, ton, toff and peak while tested on the main dataset.

Estimator configuration % fit Best case Worst case

ton (s) toff (s) Peak (lmol/m2/s) ton (s) toff (s) Peak (lmol/m2/s)

Sigmoid-10,10,1 (nonlinear) 80.23 7.1 5.2 2.0 9.5 6.0 45
BJ-7,7,7,7,1 (linear) 30.26 13 26 6.7 18.8 51.2 63

Table 4
Top three estimator settings for the main dataset during forward and inverse modelling.

Class of models Model number Nonlinearity in NLHW estimator Input units Output units Poles Zeroes Delay

Inverse models 1 Sigmoid 35 35 10 10 1
2 Wavelet – – 8 8 1
3 Sigmoid 35 35 1 1 1

Forward models 1 Piecewise linear 25 25 10 10 1
2 Piecewise linear 40 40 6 6 1
3 Piecewise linear 25 25 9 9 1

Table 5
Performance of the top three estimator structures (in %) for each of the 20 datasets during forward and inverse modelling.

Dataset Temperature (�C) Humidity (%) Inverse models (% fit) Forward models (% fit)

Model-1 Model-2 Model-3 Model-1 Model-2 Model-3

Main 23.8 49 80.23 72.36 69.53 55.81 55.76 54.42
1 24.4 55 59.70 5.23 7.72 26.09 0.62 25.72
2 24.2 57 64.88 18.45 7.58 40.81 40.46 40.32
3 23.7 52 38.04 31.32 17.80 85.49 94.97 83.86
4 24.6 49 �2.91 26.34 36.49 14.01 62.98 19.50
5 22.8 47 45.29 48.06 63.90 59.24 33.43 44.14
6 22.4 54 2.07 12.73 62.17 27 70.44 14.28
7 26.3 47 56.38 28.15 55.81 91.88 42.43 91.88
8 23.3 49 28.04 54.76 53.46 21.50 50.28 78.57
9 23.3 49 22.01 73.90 8.75 86.86 91.85 85.74

10 24.4 53 36.39 53.41 54.12 42.09 65.40 20.40
11 24.6 52 2.23 9.22 56.50 67.81 66.27 65.14
12 24.6 52 5.64 53.41 3.18 67.76 26.05 66.03
13 23.7 52 69.51 17.78 41.79 50.44 39.10 18.81
14 24.8 56 72.99 26.46 34.30 23.56 77.90 79.38
15 23.1 50 25.34 60.90 47.93 90.41 91.81 93.31
16 23.1 35 30.42 75.06 67.38 97.70 98.34 46.49
17 23.1 50 31.30 71.77 53.55 91.18 11 90.48
18 23.1 50 72.95 31.45 54.02 74.95 18.77 25.08
19 24.9 58 50.43 30.44 67.81 72.20 57.42 57.18
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as described in the experiment section which rapidly
changes the polarisation of the guard cells, thereby affect-
ing K+ ion concentration and as a result affecting the ionic
current recorded. On contrary, a natural (un-manipulated)
variation of temperature and humidity can always be con-
sidered to be constant during the experiment conducted
over a short period of time [40]. There are also some theo-
retical arguments that at least a temperature change of
10 �C is necessary to generate action potentials in plants
as per the study by Sukhov and Vodeneev [23]. Since
within half an hour duration of our experiment, the
temperature change was negligible, it has not been consid-
ered in the modelling. In Table 5, the ambient temperature
and humidity within the Faraday cage have also been
reported for each experimental condition (which are taken
from the original database), but due to their static nature
they have not been considered as additional inputs for
the modelling. Although there is a possibility of increase
in leaf temperature if the light source is kept very close
to the plant. Since, the light source used for the present
experiments were LED which produces cool lighting, we
have only measured the room temperature as an indicator
of the ambience as well as the plant surface temperature. A
larger deliberate variation in temperature (heat or cold
shock) could be taken as an additional input to investigate
thermal effects on such models in future research.

5. Conclusion

By using the electrical response data of 20 plants
including three different species viz. L. nobilis, Z. zamiifolia,
and C. sativus to incident light stimulus, the rising and fall-
ing edges of the light has been successfully predicted
within a forward and inverse modelling dynamical system
framework. The best prediction for detecting the instants
of turning on/off and peak intensity of light was obtained
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by a set of NLHW models over linear and NLARX models.
The top three models show consistent prediction ability
across all the datasets under different light pulse widths.
It was also found that if the morphology of the electrical
response is different from the response that is used to train
the models, then the prediction accuracies deteriorate a
bit. This method of system modelling, based on system
identification approach, can be further explored by using
plant electrical response data to determine a variety of
stimulus such as introduction of gas and chemical to the
soil, thus paving the path towards conceptualising plant-
based novel environmental biosensors in future.
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