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INTRODUCTION
Taxonomic identification by the use of “taxonomic 

keys” is traditionally based on a paper-based type of 
expert system, often involving a series of choices from 
successive groups of contrasting statements, culminat-
ing in a name (Gaston & O’Neill, 2004). Each statement 
describes the state of at least one morphological character 
or attribute. The effectiveness and accuracy of this type 
of identification is usually linked to the experience of the 
expert who compiled it but is also time consuming and 
affected by the environment that can alter morphological 
characters. Moreover, this approach may not fully dis-
criminate where character states involve only subtle mor-
phological differences. Characterisation of subtle charac-
ter differences such those found in cultivar identification 
of plants has been performed by the use of bio-molecular 
techniques (chemotaxonomy, Eder & al., 1994; nucleic 
acids, Żebrowska & Tyrka, 2003; analysis of isozymes, 
Arzate-Fernàndez & al., 2005) but, though effective, are 
often resource and labour-intensive, and require skilled 
and experienced operators to be effectively exploited. A 
new approach for plant identification has been recently 
developed by the introduction of artificial neural networks 
(ANNs) (Clark & Warwick, 1998; Mancuso & al., 1998; 
Bari & al., 2003; Mugnai & al., 2007), which are informa-
tion processing paradigms modelled as biological nervous 
systems, composed of a large number of highly intercon-
nected processing elements (akin neurons) working in 
unison to solve specific problems (Veelenturf, 1995). An 

ANN, like the human mind, learns by examples and is 
configured for a specific application, such as pattern rec-
ognition or data classification.

Fractal scaling is evident in natural objects from the 
micro-scale to the macro-scale; investigations show that 
non-fractal objects are the exception rather than the rule 
in many natural systems (West & al., 1999). Mancuso 
(1999) highlighted the value of fractal geometry of leaves 
for analysis of patterns in leaf morphology. For this rea-
son, leaf fractal parameters were used in this study and 
considered as useful parameters for plant discrimination 
and identification.

The case study presented here involves the common 
and widespread Australian Banksia integrifolia L. f., a 
taxon that demonstrates a remarkably high level of mor-
phological intraspecific variation (Thiele & Ladiges, 
1994). Banksia is an iconic Australian genus that is 
widespread both in eastern and western parts of Aus-
tralia and comprises 80 species, including trees, shrubs 
and groundcovers and growing in swamps, coastal habi-
tats, forest and desert habitats. Banksia integrifolia is a 
highly variable species consisting of four subspecies: (1) 
subsp. aquilonia (A.S. George) K.R. Thiele, with long, 
narrow, acute leaves that are spirally arranged and with 
follicles that are typically slightly larger than those of 
the other varieties (George, 1981); (2) subsp. integrifolia, 
with short, usually obtuse, dull-green leaves; (3) subsp. 
compar (R. Br.) K.R. Thiele, with large, glossy leaves with 
undulate margins and a relatively obtuse tip; and (4) subsp. 
monticola K.R. Thiele, which was considered a montane 
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form of B. integrifolia for many years but recently pro-
moted to subspecies rank (Thiele & Ladiges, 1994) due 
to differences in leaf shape and fruiting structure. Clas-
sical printed taxonomic keys based on leaf parameters 
and flower characteristics have already been used for the 
identification of B. integrifolia (Thiele & Ladiges, 1994) 
but, to date, there are no known computer-based identifi-
cation systems relating to this species.

The aims of the work presented here are: (1) to per-
form univocal discrimination of twelve B. integrifolia 
morphotypes grown under uniform and controlled con-
ditions by morphological and fractal characterization of 
leaves and flowers through image analysis; (2) to associate 
nine unknown morphotypes to three known B. integrifolia 
subspecies (s  ubsp. integrifolia, subsp. monticola, subsp. 
compar) by the development of a dedicated ANN; (3) to 
attempt the development of a phenetic clustering of the 
tested Banksia accessions by the construction of a phe-
netic tree based on leaf and flower morphological and 
fractal characters.

MATERIALS AND METHODS
Plant material.  —  Plant material was collected 

from a living collection located on The Banksia Farm 
(Mount Barker, WA, Australia, 34°38′15″ S, 117°38′58″ E). 
The selected morphotypes belonged to three Banksia in-
tegrifolia subspecies (subsp. integrifolia, subsp. monti-
cola, subsp. compar) and nine unknown accessions that 
exhibited differences in habit, leaf and flower shapes. 
Voucher specimens of the subspecies are lodged in the 
herbarium of Kings Park Botanical Garden (KPBG) of 
Perth, Australia. Eighty leaves per accession were col-
lected at random from healthy one-year-old branches on 
five mature plants, and split into two groups: forty for the 
training phase of ANN construction and the other forty 
for the validation phase (see below). Four inflorescences 
per accession were randomly collected, two at the fully 
open flower stage and the other two at 50% open flower 
stage. Eighty flowers per accession were selected to derive 
styles and stylar hooks (i.e., style long and wiry protruding 
from the slit in the perianth and curving out in hook shape, 
typical of some Banksia species) for both the training and 
the validation phases of the ANN.

Image acquisition and determination of mor-
phometric parameters.  —  A desktop optical scanner, 
set at 300 × 300 dpi, 16 million colours, was used to ac-
quire leaf (Fig. 1) and flower (styles and stylar hooks) 
images (Fig. 2). Fourteen morphometric parameters (Ta-
ble 1) were determined in both leaves and flowers for each 
image through an image analysis software (UTHSCSA 
Image Tool 3.0). The identification of a single leaf/flower 
by a certain number of objective parameters, instead of 

using the entire and complete digital image per se, permit-
ted to avoid the problem of the ‘curse of dimensionality’ 
(Bellman, 1961).

Fractal geometry and fractal parameters.  —  
Leaf fractal parameters were calculated by a fractal image 
analysis software (HarFA, Harmonic and Fractal Image 
Analyzer 4.9.1). The leaf fractal spectrum was obtained 
using the method previously described by Mancuso (2002). 
In brief (Fig. 3, an output of HarFA), each leaf image was 
split into the three constituent colour channels (red, green, 
blue); each channel was set for a threshold colour value 
between 0 and 255 and the fractal dimension (D) for each 

Fig. 1. Leaf images of the selected morphotypes, belonging 
to three Banksia integrifolia subspecies (subsp. integrifo-
lia, subsp. monticola, subsp. compar) and nine unknown 
accessions differing in habit, leaf and flower shape. 
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colour value was calculated. In fractal geometry, D is a 
statistic that provides an indication of how completely a 
fractal appears to fill space, as one zooms down to finer 
and finer scales. In our case, D was assessed using the 
box-counting method (Mancuso & al., 2003) and plotted 
against the colour intensity to obtain the fractal spectra 

of the three channels. After drawing the baseline (D = 1) 
that separates the fractal (> 1) from the non-fractal (< 1) 
zone of the spectrum, five fractal parameters (First X, 
Last X, Peak coordinates X and Y, and Total peak area) 
were calculated for each colour channel (Fig. 4). As pre-
viously reported by Mancuso & al. (2003), the green and 

Table 1.  Morphological parameters of Banksia integrifolia organs (leaves, styles, flower hooks) calculated by the image 
analysis software.

Parameter Definition
 1 Area Area of the organ
 2 Perimeter Perimeter of the organ
 3 Major axis length Length of the longest line that can be drawn through the organ
 4 Minor axis length Length of the longest line that can be drawn through the organ perpendicular to the major axis
 5 Roundness Computed as: (4 × π × area) / perimeter2

 6 Elongation Ratio of the length of the major axis to the length of the minor axis
 7 Feret diameter Diameter of a circle having the same area as the organ
 8 Compactness Computed as: sqrt (4 × area / π)  / major axis length
 9 Integrated density Product of the mean grey level and the number of pixels in the image 
10 Min grey level Minimum grey level of the organ
11 Mean grey level Mean grey level of the organ
12 Median grey level Median grey level of the organ
13 Mode grey level Mode grey level of the organ
14 Max grey level Maximum grey level of the organ

Fig. 2. Hooks (A) and style (B) images of the selected morphotypes. 
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red channels were directly influenced by the phenotype, 
shifting their respective spectra to the left or to the right 
according to the different accessions (Fig. 5). As the blue 
channel seemed relatively unaffected, only green and the 
red channel results were selected as informative for the 
constitution of the neural network.

Construction of the back propagation neural 
networks (BPNNs).  —  A multi-layer neural network 
(MLNN) with the generalized delta rule for learning by 

a back-propagation learning algorithm (Rumelhart & al., 
1986) is an effective system for learning discriminants for 
classes from a set of examples (Sejnowski & Rosenberg, 
1987). It has been recently introduced as a useful method 
for plant identification (Mancuso & al., 1998; Clark & 
Warwick, 1998; Mancuso & Nicese, 1999): BPNN learns 
the class knowledge directly from the training dataset 
and, therefore, it is unnecessary to make any assumptions 
regarding the underlying probability density functions. 
Information about a priori probability can be adjusted 
after training (Hush & Horne, 1993), or by increasing the 
number of training patterns. Moreover, there is no need for 
retaining the training data and no extensive computation is 
involved in the classification of unknown patterns. BPNN 

Fig. 3. Schematic diagram of the experimental protocol 
used to assess the application of fractals to the image 
analysis of leaves.

Fig. 4. Graphical representation of the five fractal param-
eters calculated from each colour channel: First X, Last X, 
Peak coordinates X and Y, and Total peak area. The base-
line with the fractal dimension D = 1 separates the fractal 
(> 1) from the non-fractal (< 1) zone of the spectrum. The 
figure represents an example of the output given by the 
software used for the fractal image analysis (HarFA, Har-
monic and Fractal Image Analyzer 4.9.1).

Fig. 5. Fractal spectra of the blue, green and red channels 
derived from the collected leaves belonging to the Banksia 
integrifolia accessions. 
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algorithm has also low memory requirements compared to 
other algorithms (Zhang & al., 2007) and usually reaches 
an acceptable level of error in a short time.

In details, a BPNN is an iterative gradient algorithm 
derived from a multilayer feed-forward network, or mul-
tilayer perceptron (MLP) and composed of some layers of 
neurons: an input layer, one or more hidden layers, and an 
output layer. The input layer collects the information about 
the system and passes them to the hidden layer(s) which 
processes the information initiated at the input. At the end, 
the output layer gets the observable response. The hidden 
layer(s) connects the input pattern x with the output pat-
tern y through a series of interconnected weights (Eq. 1):

=
=

n

i iiwxu
0  [1]

where u is the aggregated input signal; xi is the input pat-
tern; wi is the weight of the i  th input vector which is con-
nected to i  th processing element. Particular nodes were 
also used to shift the neuron transfer function and to im-
prove the network performance, thanks to the backpropa-
gation of errors (Rumelhart & al., 1986).

The most frequently used adjustment of weights is a 
simple gradient descent: in this case, each weight adjusts 
by a small amount proportional to the derivative of the 
error function (δE  /  δwij) with respect to that weight, and 
in the opposite direction (Eq. 2):

Δwij = – ε(δE / δwij) [2]

where Δwij 
is the adjustment of the weight wij connecting 

the unit i of one layer with the unit j of the following layer, 
while ε is the learning rate (value of 0.1).

In the present study a custom–developed algorithm for 
the neural network construction was developed, and a strict 
gradient descent (Rumelhart & McClelland, 1988) was 
used with the introduction of an averaging term (Eq. 3):

Δwij (iteration n) = – ε(δE / δwij) + μΔwij (iteration n–1)   [3]

where the coefficient μ is referred as the momentum (value 
of 0.3).

In order to obtain a model with validation capabili-
ties, the collected 80 leaves per accession were split into 
two datasets. A training set of 40 leaves was needed to 
build the neural model, which implies that the processing 
elements were able to change the output in response to 
the input change by adjusting the connecting weights wi 
(Eq. 1). A validation set, composed by the other 40 leaves, 
was used to verify the correctness of the model.

The training phase was considered complete when 
the ANN achieved the desired statistical accuracy as it 
produced the required outputs for a given sequence of 
inputs. The correct network structure was created after 

stopping the learning process when the root mean square 
error (RMS error, Eq. 4) was minimized:

RMS error =  [4]

where yij is the element of the matrix (N × M) for the 
training set, and outij is the element of the output matrix 
(N × M) of the neural network (N is the number of vari-
ables in the matrix and M is the number of samples). The 
training phase was iterated until the RMS error became 
< 0.06, and the difference between the RMS in two con-
secutive periods was < 0.0001.

The validation test was also critical in order to verify 
that the network did not simply memorize the training 
set but learned the general patterns involved within an 
application. At this stage, input data derived from the 
validation set were put into the constructed ANN and the 
predicted outputs were then evaluated. The predicted and 
the experimental values were then compared to measure 
the network performance. When the validation test is well 
performed, unknown data can be evaluated and the rela-
tive outputs are predicted.

In this study, leaf and flower parameters obtained 
from the image analysis were used as inputs during both 
the training and the validation phases as independent vari-
ables, while the twelve accessions of Banksia integrifolia 
represented the outputs. From preliminary tests, 40 was 
considered the minimum significant number of leaves/
flowers per phase. In fact, factors in the hidden layer, such 
as learning scheme, numbers of nodes of the output and 
input and connections between them play an important 
role (Zurada, 1992). The determination of the best con-
figuration for the ANN was performed by a preliminary 
test among several hierarchical ANNs. The minimum er-
ror was achieved using one hidden layer composed by 50 
nodes (or neurons). In Eq. 1, u must be further processed 
by an activation function, which determines the process 
inside the neurons. For our purposes, the hidden layer was 
activated by a logistic sigmoid function (Eq. 5), which 
allows the representation of non-linear relationship (Mon-
tague & Morris, 1994):

( )xe
y

+
=

1
1  [5]

The node’s activation function (except for the input 
layer, which uses the input itself) controls the output signal 
strength for the unit. These sigmoid functions set the out-
put signal strength between 0 and 1, acting like an output 
gate that can be opened (1) or closed (0). As the function 
is continuous, it is also possible for the gate to be partially 
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opened (i.e., output signal strength between 0 and 1). In 
an ideal case only the class of the output representing a 
given accession would show a value of 1 (correct identi-
fication) while all the other classes would show the value 
0 (incorrect identification). However, due to the natural 
variation among leaves, the output of the expected class 
usually tends to report a value < 1.

Two artificial neural networks were built in this 
experimental work. The first BPNN was based only on 
the leaf morphometric and fractal parameters inserted 
in the training phase as input signals. Flower (styles and 
stylar hooks) morphometric parameters were added later 
to the network as additional input signals together with 
the previous leaf parameters, in order to build a more 
informative, complete and discriminating network. Neu-
ral network outputs from the second BPNN were then 
used to measure the dissimilarities or distances between 
accessions when forming the clusters inside a dedicated 
phenetic tree.

Data analysis.  —  Morphometric parameters were 
subjected to one-way ANOVA and their means separated 
by Tukey’s Multiple Comparison Test (n = 30, P < 0.05; 
Fowler & al., 1998). To obtain a similarity matrix among 
accessions, the COSINE pattern similarity measure was 
performed (Bartish & al., 1999). A cluster analysis based 
on the unweighted pair group method with arithmetic 
averages (UPGMA, Sokal & Michener, 1958) was per-
formed using this matrix, and a phenetic tree with Eucli-
dean distances showing how the accessions clustered was 
produced by NTSYSpc 2.2 (Exeter Software). 

RESULTS
The most informative leaf (Table 2), hooks (Table 3) 

and styles (Table 4) morphometric parameters enabled a 
preliminary discrimination of the tested morphotypes, so 
permitting the creation of rough groups of similarity. The 
discrimination based on the leaf area indicated that acces-
sions 3, 5 and 13, which showed the greatest values, should 
be grouped together, whereas the smallest values found in 
4 and 14 should compose another group of similarity. Leaf 
perimeter almost followed the leaf area trend, except for 
13 that, despite the highest leaf area, showed a reduced 
perimeter compared to 3 and 5. The other two parameters 
(leaf major and minor axes) provided other levels of dis-
crimination based on leaf shape. The same conclusions 
could be obtained by using flower parameters. Similarities 
among the morphotypes were analysed and distinguished 
by the construction of the dedicated ANNs. The BPNN 
outputs can be graphically represented by a XY-graph for 
each accession, with the accession names on the x-axis, and 
the y-axis reporting the output signal strength. Each graph 
aims to show how the BPNN was able to discriminate the 
selected accession in comparison with the others.

The first BPNN was built using only leaf morpho-
metric and fractal parameters: in this case, the network 
almost completely discriminated the relative morpho-
types which presented an output value higher than 0.5, 
which is considered the threshold value for a successful 
discrimination in plant species identification processes 
(Pandolfi & al., 2006), with the exception of morphotypes 

Table 2. The most informative leaf morphometric parame-
ters obtained by leaf analysis. Data are reported as means 
(n = 40) and sorted from the highest to the lowest leaf area 
values. Means were separated by Tukey’s test: different 
letters show statistically significant differences for P < 
0.05.

Morpho -
type

Area 
[mm²]

Perim-
eter 
[mm]

Major 
axis 
[mm]

Minor 
axis 
[mm]

Elon-
gation

3 2,967 a 420 a 192 a 24 bc 7.93 b
5 2,645 a 400 a 181 a 22 cd 8.31 ab
13 2,486 a 340 b 144 c 28 a 5.08 e
12 2,416 b 381 b 174 b 20 e 8.57 a
11 2,234 b 343 b 159 bc 20 de 7.67 bc
8 2,091 bc 296 c 135 d 22 de 6.20 d
compar 2,013 bc 325 b 149 bc 20 de 7.28 c
9 1,901 c 244 d 106 ef 26 b 4.06 f
integrifolia 1,430 d 244 d 103 f 20 e 5.16 e
monticola 1,266 de 264 cd 116 e 16 f 6.99 c
14    944 ef 193 d  83 g 17 f 4.88  
4    777 f 180 e  81 g 13 g 6.06 d

Table 3. The most informative hook morphometric param-
eters obtained by flower image analysis. Data are reported 
as means (n = 40) and sorted from the highest to the lowest 
leaf area values. Means were separated by Tukey’s test: 
different letters show statistically significant differences 
for P < 0.05.

Morpho-
type

Area 
[mm²]

Perim-
eter 
[mm]

Major 
axis 
[mm]

Minor 
axis 
[mm]

Elon-
gation

12 104.49 a 69.35 bc 25.48 d 8.84 a 2.99 e
11 101.72 a 72.82 a 28.50 b 6.35 d 4.56 bc
5 100.58 a 69.25 bc 27.01 c 6.91 c 3.92 d
9  92.50 b 61.95 d 22.59 e 7.63 b 2.99 e
4  85.11 c 67.49 c 25.66 d 9.49 a 2.72 e
compar  83.91 cd 66.08 c 25.74 cd 6.06 de 4.27 cd
3  82.76 cd 66.96 c 26.36 cd 5.55 e 4.82 b
monticola  81.91 cd 70.24 b 30.35 a 4.54 f 6.85 a
integrifolia  81.13 cd 58.57 e 22.07 e 6.14 de 3.73 d
8  79.18 cd 59.51 de 21.40 e 6.67 cd 3.27 de
14  76.29 de 60.82 de 24.67 d 5.48 e 4.60 bc
13  70.34 e 62.32 d 23.94 d 5.44 e 4.47 bc
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was constructed (Fig. 8). As expected, a close cluster 
formed by morphotypes 11 and 12 was found, suggest-
ing a strong morphological relationship between these 
two accessions. Also morphotypes 3 and 5 were closely 
grouped together. All these accessions were associated 
with subsp. compar. Moreover, morphotype 9 was rec-
ognized as subsp. integrifolia. On the contrary, the ANN 

5, 11 and 12 (Fig. 6 in the online version of this arti-
cle;  Table 5). Among the discriminated morphotypes, 
the highest output value was shown by 4 (0.99), which 
means that this accession was completely and unequivo-
cally discriminated by the dedicated BPNN. However, 
even though morphotype 5 reported an average output 
of 0.45, this result can lead to a successful discrimina-
tion because the output graph reported no concurrent and 
significant peaks in correspondence with other acces-
sions. On the contrary, morphotypes 11 and 12 showed 
a very different behaviour, because both the accessions 
reported a concurrent and almost equally significant peak 
in its own graph corresponding to the other accession. 
This means that the first BPNN, exclusively based on leaf 
parameters, was not completely able to unequivocally 
discriminate between morphotypes 11 and 12, due to a 
strong morphological and fractal similarity in leaf shape.

In order to improve the effectiveness of the first 
BPNN, flower morphometric parameters were added as 
inputs to build a second, more discriminating and inform-
ative BPNN (Fig. 7 in the online version of this article). 
This improvement led to a more powerful network com-
pared to the previous BPNN, with all the output values 
referring to the tested accessions higher than 0.9 (Table 5). 
This means a total, complete and unequivocal discrimina-
tion of any single morphotype.

To illustrate the ability of the second BPNN to dis-
criminate among the accessions, a phenetic tree based on 
the morphological similarities among the different OTUs 
(Banksia morphotypes) and derived from the ANN results 

Table 4. The most informative styles morphometric param-
eters obtained by flower image analysis. Data are reported 
as means (n = 40) and sorted from the highest to the lowest 
leaf area values. Means were separated by Tukey’s test: 
different letters show statistically significant differences 
for P < 0.05.

Morpho-
type

Area 
[mm²]

Perim-
eter 
[mm]

Major 
axis 
[mm]

Minor 
axis 
[mm]

Elon-
gation

compar 18.62 a 69.51 c 32.03 c 0.68 a 47.32 c
12 18.13 ab 71.97 ab 33.35 b 0.64 b 52.41 b
11 18.06 ab 69.71 c 32.59 c 0.68 a 48.24 c
4 17.88 b 71.78 b 32.94 c 0.64 b 52.04 b
monticola 17.06 c 73.70 a 34.24 a 0.62 c 55.53 b
14 16.84 cd 64.17 d 29.95 e 0.65 b 46.27 cd
3 16.64 d 68.15 c 31.51 c 0.62 c 51.12 b
9 16.53 d 60.08 e 27.76 f 0.70 a 39.89 f
integrifolia 15.46 e 62.24 de 28.52 e 0.66 ab 43.63 e
5 15.17 e 72.68 a 33.22 bc 0.53 d 63.24 a
13 14.18 f 60.36 e 27.45 f 0.61 c 45.18 d
8 14.16 f 58.02 f 27.07 f 0.63 bc 43.17 e

Table 5. Output level of similarity in the two dedicated 
BPNNs. 

Leaves Leaves and flowers
integrifolia 0,84 0,97
compar 0,85 0,98
monticola 0,91 0,98
3 0,77 0,88
4 0,99 1,00
5 0.45* 0,94
8 0,80 0,98
9 0,90 0,97
11 0.43** 0,95
12 0.44** 0,95
13 0,72 0,97
14 0,89 0,99
* indicates a successful discrimination despite the low output 
value as no concurrent peaks were monitored. 
** indicates a unsuccessful discrimination as concurrent peaks 
were monitored.

Fig. 8. Phenetic tree based on UPGMA analysis of morpho-
logical similarity estimates (COSINE similarity matrix de-
rived from the second BPNN outputs, obtained using both 
leaf and flower parameters) among the tested morphot-
ypes of Banksia integrifolia. The numbers at the x-axis re-
port the Euclidean distances among the accessions.
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was not able neither to associate subsp. monticola with the 
unnamed accessions, nor to cluster morphotypes 4, 8, 13 
and 14, which remained completely distinguished. In this 
case, a clear association between morphotypes 4, 8, 13, 14 
and one of the subspecies was not unequivocally possible.

DISCUSSION
A certain number of techniques for the identifica-

tion of biological samples should be used to assign new 
specimens to taxonomic groups (Weeks & Gaston, 1997), 
such as linear discriminant analysis, but mostly of them 
are based on the restrictive assumptions of multivariate 
normality and homogeneity of variance-covariance ma-
trices (Boddy & Morris, 1993). On the contrary, the use 
of ANN for biological species identification should be 
promoted and supported as more appropriate, because 
ANNs are powerful pattern-recognition and data-analysis 
tools which make no preliminary assumptions about data. 
Here we report that our BPNN can discriminate among 
different Banksia morphotypes, with the second BPNN 
being capable of successfully identify all the tested Bank-
sia integrifolia morphotypes through the image analysis 
of both leaves and flowers. On the contrary, the use of leaf 
parameters alone failed to properly discriminate among 
morphotypes 11 and 12.

Similar positive results in the use of BPNN for plant 
identification were previously obtained in olive (Bari & 
al., 2003; Mancuso & Nicese, 1999), chestnut (Mancuso 
& al., 1999), Rollinia (Mariño & Tressens, 2001), grape-
vine (Mancuso & al., 1998), Tilia spp. (Clark, 2004) and 
Camellia japonica (Mugnai & al., 2007). In this study, 
the introduction of fractal parameters as quantitative in-
put layers in our ANN revealed an improvement in the 
reliability of the system. The fractal spectrum has been 
recently used as an useful tool to assess the hardiness and 
cold tolerance of some Australian species such as Callis-
temon and Grevillea spp. (Mancuso & al., 2003, 2004), 
and was introduced as a botanical identification key by 
Bari & al. (2003) on Olea europaea L. and by Mugnai & 
al. (2007) on Camellia japonica L.

The BPNN was also a powerful tool to detect similari-
ties among the morphotypes, as a phenetic tree based on 
cluster analysis of its result can be built. Cluster analysis 
from the second BPNN created groups composed by simi-
lar unknown morphotypes and a related Banksia subspe-
cies (Fig. 8). For example, morphotype 9 was associated 
with subsp. integrifolia, whereas morphotypes 3, 5, 11 
and 12 were identified as B. integrifolia subsp. compar. 
On the contrary, morphotypes 4, 8, 13 and 14 could not 
be unequivocally associated with any subspecies as their 
Euclidean distances did not permit a clear and unequivo-
cal clustering. This level of dissimilarity did not permit 

unequivocal association with any subspecies, probably 
due to an intrinsic high morphological variability inside 
these accessions. In fact, the success of a BPNN largely 
depends on the quantity, validity, and accuracy of training 
data, as neural networks are better able to train and learn 
to generalize when the presented data are rich in variation. 
In our case, the creation of an ANN based on both flower 
and leaves morphometric and fractal parameters can ef-
fectively and unequivocally recognize the tested morpho-
types. It is well known that it is often easier to correctly 
identify a specimen to a higher taxon than it is to iden-
tify to the rank of subspecies. For this reason our results 
should be considered a promising approach to the correct 
identification of specimens, even if the association of the 
unknown accessions with the known subspecies appeared 
to be rather controversial. One of the main disadvantages 
of an ANN is the need of a suitable set of example data for 
the achievement of an excellent quality in the training set, 
as this operation can be usually defined as the key point of 
all the ANN building process. ANN should be considered 
applicable only to problems where there are ample data for 
network training, and an equal number of samples from 
each group in the training set in order to avoid imbalance in 
network training (Weeks & Gaston, 1997). Particular care 
should be directed to the choice of the plant material, which 
must be healthy, well-developed and representative of the 
specimens to be associated. Most studies of automated 
identification systems have employed training sets with 
a relatively small number of samples (5–10) per species 
(Gaston & O’Neill, 2005), but they must be ideally larger 
to improve the accuracy of identifications. The use of 40 
leaves and flowers from five plants in the training set of 
the present work should have reduced the risk of a wrong 
estimation of the specimen variability.

The BPNN built on all the calculated parameters had 
the highest output values and the highest level of appar-
ent success in discrimination of morphotypes. A major 
limitation of this approach is that plant material needs to 
include flowering material which necessarily restricts the 
times at which the analysis can be performed. In ecological 
and botanical studies it is generally important to be able to 
recognize the species in situ, and specimens with flowers 
are not always available. In our case, a network exclusively 
based on morphometric and fractal parameters of leaves 
can be effectively and successfully used, though not always 
unequivocally, to discriminate among Banksia integrifo-
lia accessions, but the inclusion of flower morphometric 
parameters can lead to a more powerful, detailed and in-
formative network, with a high discrimination capacity.

In conclusion, the application of a BPNN is proposed 
as a complementary method of botanical identification, 
being capable of separation of all the tested Banksia in-
tegrifolia accessions   and of creating associations between 
known taxa (here: subspecies) and unnamed accessions.
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E1

Fig. 6. Outputs of the first BPNN based on leaf morphometric and fractal pa-
rameters. Each frame shows the BPNN outputs for a given Banksia acces- ►
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E2

sion. Reported symbols and lines show the output data. x-axis reports the 
name of the accessions, whereas y-axis reports the output signal strength.

►
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E3

Fig. 7. Outputs of the second BPNN based on leaf and flower morphomet-
ric and fractal parameters. Each frame shows the BPNN outputs for a given ►
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E4

► Banksia accession. Reported lines show the output data. x-axis reports the 
     name of the accessions, whereas y-axis reports the output signal strength.




