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Monday May 14 

08:30 – 09:00 Opening session 
Fedor Čiampor: Wellcome address for the Presidium of Slovak Academy of 
Sciences 

    
  Morning session (Chairman Elizabeth Van Volkenburgh) 
09:00 – 09:40 Ladislav Kováč: Information in biology: A time for rethinking the 

fundamentals 
09:40 – 10:10 Virginia Shepherd: From semi-conductors to the rhythms of sensitive plants: 

The research of J.C. Bose 
10:10 – 10:40 Mark Staves: Responses to environmental stimuli by internodal cells of Chara 

corallina 
    
10:40 – 11:00  Coffee break 
    
11:00 – 11:40 František Baluška: Plant neurobiology: paradigm shift in plant sciences 
11:40 – 12:10 Fatima Cvrčková:  Plant intelligence: why, why not, or where? 
12:10 – 12:40 Paco Calvo Garzón: Are eukaryotes truly intelligent? 
    
12:40 – 14:00  Lunch 
    
  Afternoon session (Chairman Dieter Volkmann) 
14:00 – 14:40 Frank Telewski: A unified hypothesis of mechanoperception in plants 
14:40 – 15:10 Stefano Mancuso: Spatio-temporal dynamics of the electrical network 

activity in the root apex. A multi-electrode array (MEA) study 
15:10 – 15:40 Peter Barlow: The minimum set of cells required to enervate the ‘root 

brains’ of plants 
    
15:40 – 16:00 Coffee break 
    
16:00 – 16:40 Paul Galland: Mechanisms of magnetoreception in plants and fungi 
16:40 – 17:10 Daniel Robert: Insect hearing and nanoscale mechanoreception  
    
17:10 – 17:30 General Discussion 
    
20:00 Welcome party 
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Tuesday May 15 

  Morning session (Chairman Viktor Žárský) 
09:00 – 09:40 Akihiko Nakano: Roles of endocytosis regulation in plant physiology and 

development 
09:40 – 10:10 Lukáš Synek: EXO70A1, a putative exocyst subunit, is important for polar 

growth and plant development 
10:10 - 10:30 Jan Martinec: Inositol trisphosphate receptor in plants – is it real? 
    
10:30 – 11:00  Coffee break 
    
11:00 –11:40 Bruce Veit: Stem cell signaling networks in plants 
11:40 – 12:10 Patrick Masson: A novel class of microtubule-binding proteins control root 

growth behavior and anisotropic cell expansion in Arabidopsis 
12:10 – 12:40 Przemyslaw Wojtaszek: Domain-specific cell wall-plasma membrane 

interface 
    
12:40 – 14:00  Lunch 
    
  Afternoon session (Chairman Bruce Veit) 
14:00-14:40 Julian Schroeder: Guard cell ion channel signaling 
14:40 – 15:10 Nan Yao: Endogenous programmed cell death triggers in plants 
15:10 – 15:40 Toshiaki Mitsui: Plastid targeting of glycoproteins in rice cells 
    
15:40 – 16:00 Coffee break 
    
16:00 – 16:40 François Chaumont: Plant aquaporin regulation and cell signaling 
16:40 – 17:10 Thomas Paul Jahn: Controlled and facilitated diffusion of H2O2 as a potential 

mechanism involved in signaling and ROS scavenging 
17:10 – 17:40 Sakiko Okumoto: The role of glutamate in plants and its potential function as 

a signaling molecule 
17:40 – 18:10 Frank Ludewig: Plant GABA metabolism - approaches to identify genes in vivo 
18:10 – 18:40 Ian B. Cole: Indoleamines and flavonoids in neuroprotective plant physiology 
    
19:30 – 22:00 Poster session with beer and wine 
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Wednesday May 16 

  Morning session (Chairman Julian Schroeder) 
09:00 – 09:40 Jutta Ludwig-Müller: Indole-3-butyric acid as a signal in early events of 

arbuscular mycorrhizal associations 
09:40 – 10:10 Günther Scherer: A role for phospholipase A in auxin gene regulation and 

auxin responses. The receptor may not be TIR1 
10:10 – 10:30 Michal Grunt: Evolutionary history of the domain architecture of plant 

formins 
    
10:30 – 11:00  Coffee break 
    
11:00 – 11:40 Teun Munnik: Phospholipid-based signaling - 'seeing is believing' 
11:40 – 12:10 Susan Murch: The role of human neurotransmitters 
12:40 – 12:40 General Discussion 
    
12:40 – 14:00  Lunch 
    
  Afternoon session (Chairman Teun Munnik) 
14:00 – 14:40 Axel Mithöfer: Jasmonates as inducers of Ca2+ signals in the nucleus and the 

cytosol of plant cells 
14:40 – 15:10 Viktor Žárský: Plasma membrane NADPH oxidases (NOXs) in plants – beyond 

ROS signaling 
15:10 – 15:40 Jianping Hu: The role for PEX11 and dynamin-related proteins in Arabidopsis 

peroxisome proliferation 
    
15:40 – 16:00 Coffee break 
    
16:00 – 16:40 Jinxing Lin: Myosin and actin function in directing mitochondria movement in 

living pollen tubes of Picea wilsonii 
16:40 – 17:10 Sonia Philosoph-Hadas: Actomyosin-mediated gravisensing and early 

transduction events in gravistimulated snapdragon spikes 
17:10-17:40 Sergio Mugnai: Temporary changes in gravity conditions affect oxygen influx 

at root level  
    
17:40 – 18:30 General discussion (especially on the name Plant Neurobiology) 
    
19:30 – 22:00 Poster session with beer and wine 
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Thursday May 17 

  Morning session (Chairman Mary-Jane Beilby) 
09:00 – 09:40 Minoru Ueda: Chemical factors inducing leaf-movement in Fabaceae and 

carnivorous plants 
09:40 – 10:10 Arnaldo Schapire: Vesicular trafficking as a mechanism of abiotic stress 

tolerance in plants 
10:10 – 10:40 Amit Levy: A plasmodesmata associated β-1,3-glucanase in Arabidopsis 

regulates plasmodesmata function 
    
10:40 – 11:00  Coffee break 
    
11:00 – 11:40 Ralph Hueckelhoven: Cellular polarization for membrane dynamics in 

interaction of barley with pathogenic Blumeria graminis 
11:40 – 12:10 Hans Thordahl-Christensen: Syntaxin SYP121 is involved in a number of 

pathogen defence mechanisms 
12:10 – 12:40 Yangdou Wei: Mining iron for host defense and pathogen virulence 
    
12:40 – 14:00  Lunch 
    
  Afternoon session (Chairman Irene Lichtscheidl) 
14:00 – 14:40 Mary-Jane Beilby: Action potentials in Charophytes 
14:40 – 15:10 Alexander Volkov: Electrophysiology of Venus flytrap (Dionaea muscipula 

Ellis) 
15:10 – 15:40 Mary A. Bisson: Effects of acetylcholine on the blue-light response of dark-

grown Arabidopsis seedlings 
    
15:40 – 16:00 Coffee break 
    
16:00 – 16:30 Edgar Wagner: Photoperiodic adaptation by systemic control of growth and 

rates and planes of cell division via systemic electrophysiological 
communication from the cellular to the organismic level 

16:30 – 17:00 Elizabeth Van Volkenburgh: Mesophyll cells are the driving force for light- 
and acid-induced leaf blade expansion of Pisum sativum var. Argenteum 

17:00 – 17:30 Ed Etxeberria: The linear phase of sucrose uptake concentration curve in sink 
organs is largely mediated by fluid phase endocytosis 

17:30 – 18:00 Miroslav Kaminek: Cytokinin oxidase/dehydrogenase activity in oat xylem sap 
    
18:00 – 18:30 General discussion 
    
20:00 Farewell party 
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Friday May 18 

  Morning session (Chairman Wilhelm Boland) 
09:00 – 09:40 Mark Mescher: Host-location by parasitic plants 
09:40 – 10:10 Renata Bogatek: Allelochemicals as a signaling molecules in the negative 

plant-plant interaction 
10:10 – 10:40 De Oliveira R.F.: Chemical communication between roots and shoots in 

tomatoes 
10:40 – 11:10 Ralf Oelmueller: Molecular analysis of the interaction between Arabidopsis 

thaliana and the growth-promoting fungus Piriformospora indica  
    
11:10 – 11:30 Coffee break 
    
11:30 – 12:10 Ton Timmers: Common cellular mechanisms of endosymbiotic root infection 
12:10 – 12:40 Charlotte Poschenrieder: Neurotoxicity of aluminium: parallelism between 

plants and animals (including men) 
12:40 – 13:10 Heiko Maischak: Ion channel-forming compounds in caterpillar regurgitate: A 

way to manipulate the plant plasma membrane potential during herbivory? 
13:10 – 13:40 Lukas Schreiber: Cutinized and suberized plant/environment interfaces: 

structure, biosynthesis and function 
    
13:40 - 14:00 Closing session 
    
14:00 Lunch 
 

 7 



 

 

 

 

 

 

 

 

 

 

GENERAL TOPICS 

 8 



Information in biology: a time for rethinking the fundamentals 

Ladislav Kováč 

Centre for cognitive biology, Faculty of Natural Sciences, Comenius University, Bratislava, 
Slovakia 

Email: kovacl@fns.uniba.sk 

All biological species live in their own species-specific world (Umwelt), delimitated by their 
sensors. They acquire knowledge in their species-specific manner and construct their own 
species-specific reality. The human species is no exception. Humans live in a world of medium 
dimensions (macroworld). The worlds of small dimensions (microworld), of large dimensions 
(megaworld), and of great complexity (multiworld) are inaccessible to them, lying outside Kant’s 
barriers [1]. Humans are the exceptional species on Earth due to artefacts: artefacts empower 
humanity to gain knowledge on the world that exists behind the boundary erected by human 
biological sensors. To describe this unfamiliar world, humans use the concepts of their life world 
(Lebenswelt), and these concepts function as metaphors [2]. Science is replete with metaphors 
no less than is art. Biology of the second half of the 20th  century has been dominated by the 
metaphor of information. It has been customary to consider cognition at the exclusive property 
of humans, with the human mind as an organ of conscious perception, thinking, and memory, 
busy with “information processing”. Cognition has often been analyzed in terms of formal 
systems, and, accordingly, it has been thought that, in principle, cognition might be embodied in 
any kind of “hardware”, including the human-made computers. Upon new discoveries in biology 
(restricted number of genes, not much different in flies, plants, and humans; organization of 
genes, proteins and metabolites as scale-free networks; histone code; the heredity of frames; 
multiple controlling roles of small RNAs) the paradigm of information in biology may need 
a revision. 

(1) The notion of “information” is vague not only in common life, but in biology itself. It should 
be used in an unambiguous restricted manner introduced by Claude Shannon. He defined 
information entropy, or uncertainty, in terms of well defined question Q (in which all possible 
answers ∑Ai are implicated) and an apriori knowledge Ka (assigning probabilities ∑pi to the 
answers) as S(Q|Ka) =  - const ∑ pi ln pi. Information I in a message is difference between two 
entropies, one associated with apriori knowledge before a message Ka and another associated 
with aposteriori knowledge Kp after a message: I = S(Q|Ka) – S(Q|Kp) [3]. It is obvious that 
information is a variable the magnitude of which depends on the nature of well defined 
question. As the question depends on the receiver, information is a subjective quantity. 
A different question is being posed by a communication engineer, a human patient addressing 
a physician, a sperm cell heading toward an ovum, a ribosome translating messenger RNA, 
a molecular sensor specific for a particular ligand. Information is measured in bits, but it is 
neither a thing nor a sequence of digits or other units. It can be neither “processed” nor 
“stored”. What can be stored, embodied in sequences of DNA, in texts, in structures, is 
knowledge, not information. Information need not be compared with “substances” like matter or 
energy, but rather with “processes” like heat and work. Information is a specific, subject-
dependent process of transforming data into knowledge. 

(2) Life on Earth, natural (n-) life, is not a formal system, but a chemical system, ruled and 
constrained by the laws of chemistry. Chemical interactions differ fundamentally from other 
kinds of interactions, such as mechanical combinations of Lego parts. Chemistry is a science of 
emergence. Electromagnetic interactions between atoms produce profusion of molecules, with 
properties qualitatively distinct from those of their constituents. Molecules combine and/or self-
assemble into supramolecular structures. Specific conditions of the environment admit specific 
sets of chemical construction processes, driven thermodynamically or kinetically. But the 
environment has also another function: it selects, or, to use a more telling metaphor, culls the 
products of the processes, according to their stability in the environment, their capacity to 
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“survive” under the particular conditions. This capacity is largely dependent on a degree of 
isomorphism, functional rather than structural, between the products of the constructions 
processes and the environment. This isomorphism represents knowledge. Selection for stability 
introduces into chemical dynamics the second “time arrow”, in addition to the first one imposed 
by the second law of thermodynamics: evolution. Chemical evolution on Earth has produced 
chemical systems with particularly great stability, which we call, somewhat arbitrarily, living 
systems. To maintain stability, organisms are unceasingly performing ontic work, assisted by 
epistemic work. A specific manner of maintaining stability is the reproduction of a system as 
a whole, or of its “construction plans”, or “construction algorithms”, present in the form of 
genes, frames, memes, or other kind of “book-keepers” [4]. They all are storing knowledge, not 
information. Biological evolution is a progressing process of knowledge acquisition (cognition) 
and, correspondingly, of growth of complexity. The acquired knowledge is embodied in 
constructions of organisms. The structural complexity of those constructions which carry 
embodied knowledge corresponds to their epistemic complexity [1]. 

(3) There are two kinds of knowledge and of cognition and, correspondingly, two kinds of well 
posed questions. There is knowledge that reduces uncertainty; the corresponding questions are 
inquisitory questions, and the process of knowledge acquisition consists in assimilating data by 
the process of information. Another kind of knowledge serves to reduce ignorance; its 
corresponding variables are exquisitory questions and exformation (which enables novel 
inquisitory questions). Because of steady accumulation of knowledge, biological evolution is 
advancing as a Bayesian ratchet. There is much less “information processing” than it is assumed 
by the “life-as-information” or “life-as-computation” metaphor [5]. Constructions at all levels, 
from protein molecules, through cells, tissues, individual organisms, up to social institutions and 
culture, represent embodied knowledge. Triggering of pre-determined responses (usually as one-
bit information) seems to be a more appropriate description of life functioning than information 
processing. 

(4) The information metaphor in biology rendered a valuable service in unravelling processes of 
protein synthesis and topogenesis and in deciphering nucleic acid and protein sequences. In the 
postgenomic era, the concept of information may become retardant or misleading. Organisms 
may be viewed as multihierarchical chemical systems, consisting of loosely bound modules. In 
their evolution, distinct selections operate at each level of hierarchy. Biological individuality is 
hierarchically nested, from molecular sensors up to individual organisms, communities, species 
and terrestrial life as a whole (Gaia), an individual at each level of hierarchy being a 
distinct cognitive subject engaged in ontic and epistemic work. At the deepest and most 
elementary level, the loosely bound modules constitute sets of molecular engines. Engine, work, 
embodied knowledge, and triggering may become four metaphors of a new conceptual armoury.  

 

REFERENCES 
 
[1] Kováč L (2000) Fundamental principles of cognitive biology. Evol Cogn 6: 51-69 
[2] Lakoff G, Johnson M (2003) Metaphors we live by. University of Chicago Press, Chicago, Ill. 
[3] Tribus M, McIrvine EC (1971) Energy and information. Sci Amer 225: 179-186 
[4] Wimsatt WC (1980) Reductionistic research strategies and their biases in the units of 

selection controversy. In: Nickles, T. (Ed.) Scientific discovery, Vol. 2, Historical and 
scientific case studies, pp. 213-259. Reidel, Dordrecht, Holland 

[5] Kováč L (2006) Life, chemistry and cognition. EMBO Rep 7: 562-566 
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From semi-conductors to the rythmns of sensitive plants: the research of J.C. Bose 

V.A. Shepherd 

Department of Biophysics, School of Physics, The University of NSW, NSW 2052, Sydney, 
AUSTRALIA 

Email: vas@phys.unsw.edu.au 

Jagadish Chandra Bose (1858-1937) was one of India’s first modern scientists, and one of the 
world’s first biophysicists. His work with semi-conductors, radio, and microwave technology, 
published between 1985 and 1900 in journals including the Proceedings of the Royal Society, the 
“Philosophical Magazine” and “The Electrician”, was well-respected then, and remains so today. 
In 1900, after winning the admiration of physicists such as Rayleigh and J.J Thompson, Bose 
crossed the border into plant biophysics. He became a controversial figure in the West. Inventing 
unique instruments for simultaneously measuring bioelectric potentials and for quantifying plant 
movements, Bose studied plants that made rapid movements, such as the touch-sensitive 
Mimosa pudica and the Indian Telegraph plant Desmodium, as well as “ordinary” plants that did 
not make obvious rapid movements (e.g. Nauclea, the mango and the carrot). Against the tide of 
the times, Bose concluded that plants and animals have essentially the same fundamental 
physiological mechanisms. All plants have a well-developed nervous system. All plants co-
ordinate their movements and responses to the environment through electrical signalling. All 
plants are sensitive explorers of their world, responding to it through a fundamental, pulsatile, 
motif involving coupled oscillations in electric potential, turgor pressure, contractility, and 
growth. Bose’s overall conclusion that plants have an electromechanical pulse, a nervous 
system, a form of intelligence, and are capable of remembering and learning, was not well 
received in its time. A century later, some of these concepts have entered the mainstream 
literature. 
 
REFERENCES 
 
Shepherd VA (2005) Cell Mol Biol 51: 607-619 
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Insect hearing and nanoscale mechanoreception 

Daniel Robert 

University of Bristol, School Biological Sciences, Woodland Road, Brsitol BS8 1UB, UK  

Email: d.robert@bristol.ac.uk 

In animals, sensory systems can operate at the limits of what is considered physically possible 
(1). The mechanosensitive neurons of auditory systems are sensitive to extremely low levels of 
incident stimulus energy. In effect, thresholds of detection can be at energy levels close to 
thermal noise (kBT), or some 4•10-21 Joules (4zJ). In insects, hearing has been shown to be 
exquisitely sensitive, relying on mechanically well balanced receivers (2) capturing sound energy 
associated with a collection of neurones sensitive to mechanical stimuli (3, 4). In mosquitoes and 
Drosophila, the hearing organs are the antennae, with a mechanosensory organ at their base – 
Johnston’s organ (5). For these animals, as for any other insect and crustacean, hearing relies on 
the mechanotransduction performed by ciliated neurones embedded in multicellular assemblies 
called scolopidia. Previous research has shown that active mechanisms are at work in the 
hearing organs of vertebrates (review in 6), enhancing sensitivity to faint sounds and sharpening 
frequency selectivity. In Drosophila and the mosquito Toxorhynchites brevipalpes, hearing has 
been shown to be an active mechanism and several nonlinear response characteristics have been 
identified, such as nonlinear dynamic compression and autonomous vibrations (7, 8). 
Functionally, these active sensory mechanisms contribute to the nanoscale sensitivity and the 
response dynamics of the auditory organ (9). In insects, the basis of such active mechanisms 
resides in the mechanical motility of the mechanoreceptive neurons; the first neurons 
demonstrated to be mechanically motile (8). The molecular machinery subtending motility in 
insect mechanosensitive neurons is not entirely known, but it is deemed to rely on the function 
of the axonemal structure of the ciliated scolopidial neurons. Using mutant analysis in 
Drosophila, it was shown that the action of the motor molecule dynein on microtubules pairs 
was required, and that the transducer channels nompc contributed to the nonlinear, active 
response (10). Interestingly, the oscillation energy of the entire receiver –eg the antenna- could 
be shown to fluctuate above thermal noise under the concerted action of the receptor neurons 
(7-10). This suggests that cellular metabolism alone can modulate or adjust the sensitivity of 
response coherence of the receptor cell. It also shows that the process can take place at low 
energy levels. A telltale sign of such process is the presence of autonomous vibrations (7). 
Remarkably, autonomous vibrations have been observed in yeasts (11), yet their function is still 
unknown. In the opinion of the author it is likely that nanoscale mechanical vibrations will be 
discovered in yet other organisms. Whether they are related to the reception of mechanical 
energy remains to be tested. Enticingly, the increasingly refined knowledge on plant 
mechanoreception (see contributions by F. Telewski and F. Baluska) offers novel possibilities for 
comparative research. Because of their respective experimental amenability at the genetic 
level, tantalizing comparisons could be drawn between mechanoreception in Drosophila and that 
of Arabidopsis. The outcome of future research will be an integrated and general understanding 
of mechanisms of cellular motility and information processing, including the processes of energy 
dissipation and transduction at the molecular, cellular and systemic levels. 
 
REFERENCES 
 
1. Bialek W (1987) Physical limits to sensation and perception. Ann Rev Biophys Biophys Chem 

16: 455-478 
2. Göpfert MC, Robert D (2001) Turning the key on audition. Nature 411: 908. 
3. Robert D, Göpfert MC (2002) Novel schemes for hearing and acoustic orientation in insects. 

Curr Opin Neurobiol 12: 715-720 
4. Göpfert MC, Robert D (2000) Nanometre-range acoustic sensitivity in male and female 
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Plant neurobiology: a paradigm shift in plant sciences 

František Baluška1, Dieter Volkmann1, Peter W. Barlow2, Stefano Mancuso3 

1 IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, GERMANY 
2 School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK 
3 LINV, University of Florence, Viale delle idee 30, 50019 Sesto f.no(FI), ITALY 

Email: baluska@uni-bonn.de 

Sensory plant biology and plant electrophysiology were two lively disciplines up until the 1970s 
(Bünning 1959, Haupt and Feinleib 1979) but then, for somewhat obscure reasons, they showed 
no further development. In the last few years, however, there have been numerous advances in 
plant sciences which necessitate not just a revival of plant sensory biology but also the introduction 
of plant neurobiology (Baluška et al. 2006). First of all, and contrary to all ‘mechanistic’ 
predictions based on the high turgor pressure of plant cells, endocytosis has been found to be an 
essential process of plant cells which impinges upon almost all aspects of plant life (Šamaj et al. 
2005, 2006). Moreover, recent advances in the plant molecular biology have identified, besides 
classical neurotransmitters, also several proteins typical of animal neuronal systems, such as 
acetylcholine esterases, glutamate receptors, GABA receptors and endocannabinoid signalling 
components, as well as indicating signalling roles for ATP, NO and ROS (Baluška et al. 2006). 
Importantly, plant action potentials have turned out to control processes such as actin-based 
cytoplasmic streaming, plant organ movements, wound responses, respiration and photosynthesis, 
as well as flowering (Wagner et al. 2006, Fromm and Lautner 2007). Last, but not least, there 
have been significant advances in ecological studies on plant-plant and plant-insect communications, 
in behavioral studies on memory and learning phenomena in plants (Trewavas 2005a,b), as well 
as the revelation that complex plant behaviour implicates neuronal signal perception, processing, 
and the integration of ambient signals.   

Plants perform neuronal-like computation not just for rapid and effective adaptation to 
an ever-changing physical environment but also for the sharing of information with other plants 
of the same species. Plants societies increase their immunity to damage after receiving warnings 
from attacked neighbours (Engelberth et al. 2004, Ton et al. 2007). Strategies involve, among 
others, the release of volatiles which then attract the enemies of the attacking herbivores 
(D’Alessandro et al. 2006). Moreover, there are examples of ‘war-like’ phenomena whereby 
invading plants kill other plants via the release of toxic allelochemicals from their root apices 
(Bais et al. 2006). That this hostility can be caused by root apices of other plants is a new 
discovery. However, roots are also well known for their ability to avoid dangerous places by actively 
growing away from hostile soil patches. Also in war-like mode, the root apices of parasitic plants 
actively recognize the roots of their prey, grow towards them and then, in order to gain control 
over them, send out root-hair-like processes that later develop into parasitic haustoria (Tomilov 
et al. 2005). Thus, by using a vast diversity of volatiles, plants are able to attract or repel diverse 
insects and animals, and thereby are able to shape their biotic niche. The number of volatile 
compounds released and received by plants for biotic communication is immense, requiring complex 
signal-release machinery, as well as an unprecedent ‘neuronal’ decoding apparatus for correct 
interpretation of received signals. These aspects of plant activity have not yet been much studied.   

The plant neurobiological perspective reveals several surprises when the classical plant 
hormones like auxin, abscisic acid, ethylene, and salicylic acid are considered from this angle. 
Auxin and abscisic acid elicit immediate electric responses if applied to plant cells from outside 
(Pickard 1984, Felle et al. 1991, Roelfsema et al. 2004, Pei and Kuchitsu 2005), suggesting that 
their regulated release within plant tissues may be a part of neurotransmitter-like cell-to-cell 
communication (for auxin see Schlicht et al. 2006). Abscisic acid signaling pathway is conserved 
between plants and animals and this signalling molecule both stimulates and is endogenously 
produced in human granulocytes in a way suggesting that it acts as endogenous proinflammatory 
cytokine (Bruzzone et al. 2007). Importantly, biologically active abscisic acid was isolated from 
brains of vertebrates (Le Page-Degivry et al. 1986) indicating possible roles of abscisic acid in 
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the central nervous system. Salicylic acid activates similar subset of MAPKs as voltage pulses 
(Link et al. 2002). Ethylene, a classical plant hormonone, is an anaesthetic (Campagna et al. 2003), 
a fact that plant physiologists have ignored. Interestingly, anaesthetics used on animals including 
man, induce anaesthetising effects on roots similar to those of ethylene (Powell et al. 1973). 
Ethylene is released in mechanically stressed plant tissues, and structurally diverse anaesthetics 
activate mechanosensitive channels (Martinac et al. 1990, Patel and Homore 2001, Patel et al. 
2001). As ethylene is released immediately after wounding, it might act to relieve ‘pain’ in plants. 
Similarly, ethanol is known to relieve pain (Benedikt et al. 2007), and plants, especially roots, 
synthesize ethanol under stress conditions such as hypoxia and anoxia. There are numerous other 
plant-derived substances which manipulate the pain receptors in animals, such as capsaicin, 
menthol, camphor. Interestingly, the monoterpene volatiles, menthol and camphor induce oxidative 
stress and inhibit root growth in maize (Zunino and Zygadlo 2004), indicating that they, too, act 
as plant signalling molecules. Finally, plants express inhibitors that are specific to the neuronal 
nitric oxide synthases (Lowe et al. 2007, Osawa et al. 2007). Another example of neuronal behavior 
of plants is the report that prevention of nyctinastic movements of leguminous leaves causes 
their death while leaves allowed to ‘sleep’ stayed healthy (Ueda and Nakamura 2006). This 
resembles the situation in animals (Cirelli et al. 2005). Although melatonin was discovered in 
plants more than ten years ago (Kolár and Machácková 2005, Arnao and Hernandez-Ruiz 2006, 
Pandi-Perumal et al. 2006), there no scores for melatonin in the highest ranking plant journals, 
despite the fact that it is biochemically closely related to auxin. Melatonin mimics auxin in the 
induction of lateral root primordia from pericycle cells (Arnao and Hernandez-Ruiz 2007).  

The Arabidopsis genome encodes ten NADPH oxidases (RbohA-J) of which six are 
expressed only in root apices (A, B, C, E, G, I) and two (D, F) are expressed in whole seedlings 
including the root apices (Sagi and Fluhr 2006). Expression of eight of these molecules in root 
apices makes this one of the most complex signal-mediated ROS-generating organs. It is currently 
unknown for what developmental and signalling purposes so many different NADPH oxidases in 
roots are needed. A similar perplexing complexity, unique also for root apices, concerns polar auxin 
transport. Five types of PIN molecule (PIN1,2,3,4,7) are expressed in root apices (Blilou et al. 2005), 
whereas only one PIN (PIN1) is sufficient for the morphologically more complex shoot apices 
(Reinhardt et al. 2003, Reinhardt 2006)! What, then, is so special about root apices? This is a 
tough question, but answers seem to be emerging in the multitude of recent data, not easily 
interpretable by the classical plant physiological approach, but comprehensible from the approach 
of plant neurobiology (Baluška et al. 2005, Brenner et al. 2006). One of them involves the idea 
that the transition zone of root apices acts as some kind of ‘command centre’ (Baluška et al. 2004).  

Despite a relatively simple body organization, plants need sophisticated sets of coordinative 
processes. Besides their root-shoot coordination, there is also need for coordination amongst radial 
tissues, especially within and between the cortex and stele. Action potentials run preferentially 
in an axial direction and they link root and shoot apices. Despite the modular and apparently 
decentralized organization of the plant body, there are several critical situations requiring 
‘centralized’ decisions, such as, for instance, the onset of flowering as well as the onset and 
breakage of dormancy. Although these decisions are based on information retrieved via numerous 
distant organs, they imply some central ‘processor’ which would reliably control the whole plant 
body. Importantly, any wrong decision would have detrimental consequences for the whole plant. 
Moreover, internal circadian pacemakers of animals are located in their brains. The transition 
zone of root apices is the only zone in the plant body showing ‘brain-like’ oscillatory patterns of 
cellular activities responding also to leaf wounding (Mancuso and Marras 2006). Moreover, cells 
of this zone are the only ones to express up to five different PIN efflux carriers (Verbelen et al. 
2006, Bandyopadhyay et al. 2006). Across the F-actin and myosin VIII-enriched plant synapses 
(Baluška et al. 2005), PINs drive complex transcellular patterns of polar auxin transport. As this 
auxin transport is driven via vesicular secretion (Schlicht et al. 2006), auxin elicits electrical responses 
in adjacent cells (Felle et al. 1991), and it synchronizes cell activities within a cell file (Nick 
2006, Maisch and Nick 2007), auxin fulfils the minimum criterion for being a neurotransmiter-like 
signalling molecule in plants.  

Human perception of the outside world relies on a so-called ‘neural code’ which links 
sensory signals and neuronal responses. Similarly, in plants, numerous parameters of the physical 
environment, especially, light, temperature, and gravity, are continuously monitored. Polar auxin 
transport translates perceived and processed sensory information into adaptive physiological and 
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motoric responses. New concepts are needed, and new questions must be asked, for advancing 
our rudimentary understanding of the communicative nature of sensory plants. 
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The concept of plant intelligence, as proposed by Anthony Trewavas, has raised considerable 
discussion that has contributed also to the birth of plant neurobiology (see Trewavas 2002, 2003, 
2004, 2005a,b, Firn 2004, Brenner et al. 2006). However, plant intelligence remains loosely defined, 
and, as a result of attempts to persuade its opponents, it became either practically synonymous 
to Darwinian fitness (“adaptively variable behaviour” or “ability of an individual to perform in its 
environment”), or reduced to a mere decorative metaphor. A more strict view can be taken, with 
emphasis on individual memory and learning. Even this has to be done cautiously, the main problem 
being the definition of memory itself. To qualify as memories, traces of past events have to be 
not only stored, but also actively accessed (or at least accessible). We propose a variety of 
Occam´s razor approach for eliminating false candidates of possible plant intelligence phenomena in 
this stricter sense: a particular behavior of the plant may be considered “intelligent” only if it 
cannot be approximated by an algorithmic model that does not require recourse to stored information 
about past states of the individual or its environment. Re-evaluation of the phenomena previously 
presented as examples of plant intelligence shows that only some of them pass our test, while others 
do not. 
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Although Plant Neurobiology emphasizes the interdisciplinary effort whose ultimate target is the 
study of the complex patterns of behaviour of plants qua information-processing systems, it is 
not clear what we mean by “information-processing system”. Most researchers adopt a computational 
perspective, according to which information-processing boils down to the manipulation of symbols 
/subsymbols according to algebraic or statistical rules. We may nevertheless adopt an embodied, 
embedded perspective (Thelen and Smith, 1994), and interpret information-processing systems 
in non-computational and/or non-representational terms (Calvo Garzón, in press). According to 
this view, cognition is to be understood in the continuous interplay of brain, body and environment. 
In my talk, I propose to study the integration of contemporary scientific knowledge in Cognitive 
Neuroscience (Gazzaniga et al., 2002) and Plant Neurobiology (Baluška et al., 2006) under this 
lens in order to assess whether eukaryotes can be interpreted as genuinely intelligent.  

Trewavas has defended the integration of scientific knowledge of plants and animals in a 
number of works (2005; and references therein), arguing that plants do indeed count as intelligent 
organisms in much the same way as animals do. However, although sympathetic to Trewavas 
(2005) position, I shall turn his framework upside down. In particular, I shall consider time-estimation 
in relation to the distinction between online plant behaviour (flower heliotropism) and offline 
plant behaviour (leaf heliotropism) - specifically, plants’ nocturnal reorientation in the absence 
of solar-tracking (Schwartz and Koller, 1986). This case neatly illustrates why plants and animals’ 
(anticipatory) competencies can indeed be interpreted as two sides of the same coin: Both 
animals and plants can solve complex problems and react adaptively to environmental contingencies. 
In my view, nevertheless, once an embodied-embedded picture is granted, all eukaryotic organisms, 
although subject to an information-processing analysis with individual cells as computational 
building blocks, should be interpreted in non-computational terms. This view will allow us to reassess 
Trewavas’ insights under a new light. An embracing picture of eukaryotic anticipatory capacities 
will allow us to place amoebae, plants, and animals (human and non-human) along a continuum. 
Once we look at the shared cellular and molecular mechanisms of these life forms, we have a 
reason to unify the knowledge obtained along the spectrum; in non-computational and non-
representational terms, however. The ultimate aim is to discuss the sort of novel predictions 
that such a model may generate in order to test intelligence. 
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The ability to sense and respond to physical environmental stimuli is of key importance to all 
living things. Among the common environmental stimuli detected by living organisms are light, 
temperature, and a variety of chemical signals. A number of environmental stimuli appear to be 
closely related and can be considered as physical-mechanical stimuli, requiring the perception of 
a differential mechanical force or pressure gradient by the living cell. These include the 
perception of gravity, self-loading and internal growth strains, mechanical loading, touch, 
sound, and the state of hydration within a cell (turgor pressure). Recent advances have lead to 
the proposal of a plant-specific mechanosensory network within plant cells that is similar to that 
previously described in animal systems (Jaffe et al. 2002, Baluška et al. 2003). This sensory 
network is the basis for a unifying hypothesis which may account of the perception of numerous 
mechanical signals including gravitropic, thigmomorphic, thigmotropic, self-loading, growth 
strains, turgor pressure (drought and flooding stress), xylem pressure potential, and sound 
(Telewski 2006). The current state of knowledge of a mechanosensory network in plants is 
reviewed and considerations given to two different mechanoreceptor models: a plasmodesmata-
based cytoskeleton-cell membrane-cell wall (CMCW) network (Baluška et al. 2003) vs. stretch-
activated ion channels (Ding and Pickard 1993, Pickard and Fujiki 2005). Post-mechanosensory 
physiological responses to mechanical stresses are also reviewed along with recommendations 
for directing future research in the area of mechanoperception and response. 
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Root cells have been a popular research tool for decades because they allow easy access to 
individual cells for electrophysiological recording and stimulation, pharmacologic manipulations 
and high resolution microscopic analysis. However, it is technically difficult to record from and 
stimulate more than three cells using standard intracellular microelectrodes, and those cells 
usually die within minutes or, barely, hours. Thus any distributed/synchronized electrical 
activity is missed without a multi-unit approach. Multi-electrode arrays (MEAs) provide a tool to 
record from and stimulate many cells (up to hundreds) of the same root apex, concurrently and 
non-invasively. Since the array substrate is made of transparent glass, cell morphology can be 
easily monitored by the use of an inverted microscope or using fluorescent labels and a confocal. 
Here, for the first time in plant science, we use a 60-channels MEA to study in thick root apex 
slices the spatio-temporal characteristics of the electrical network activity. We observed an 
intense spontaneous electrical activity as well as stimulation-elicited bursts of spikes locally 
propagating. Our data indicate that synchronous activity of the cells emerges spontaneously 
throughout the time evolution. The strict similarity of the electrical behaviour recorded with the 
behaviour showed by neural cell culture may reflect an intrinsic capacity of the root apex to 
generate functional networks. 
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 The minimum set of cells required to enervate the ‘Root Brains’ of plants 

Peter Barlow1, Jacqueline Lück2 

1 School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK 
2 Atelier de Structuralisme Végétal, 1226 Chemin du Val d’Arenc, 83330 Le Beausset, FRANCE 

Email: P.W.Barlow@bristol.ac.uk 

When a root system – which includes the collective ‘heads’ of a plant – burrows down into the soil, 
all its ‘brains’, which are continually being created as the root system extends and ramifies, 
have to be supplied (‘enervated’) with nervous tissue [1] that connects with the posterior portion of 
the plant. So, two important questions are: what are the minimal tissue and neuro-physiological 
systems that enervate a ‘root brain’, and how are these systems continuously developed? 

A minimal ‘nervous’ tissue can be discerned in so-called ‘hair roots’ – modified roots which 
are characteristic of the plant families Ericaceae and Epacridaceae [e.g., 2, 3]. Published papers 
on hair-root anatomy [e.g., 3] allow analysis of the structure of the plerome (vascular cylinder), 
a tissue constituting the Channel and Net of the nervous system which supplies the root brain at 
the root apex. To support this anatomical analysis, a stereotypic cell lineage of the plerome was 
gleaned from the literature on Arabidopsis [4]. Here, the plerome is derived from four apically 
located stem cells. Each stem cell gives rise, via radial divisions, to one quadrant of plerome 
whose cell numbers are subsequently amplified by transverse divisions. One pair of self-similar 
plerome quadrants contains both xylem and phloem cells; the other pair of quadrants contains 
xylem only; present in all four quadrants are parenchyma and pericycle cells, some of which are 
probably essential for root nervous function. 

On the basis of the above analysis of Arabidopsis, we can now see that the anatomy of 
the hair roots helps to define the minimal plerome tissue composition which is required by any 
root. Thus the hair-root plerome indicates that hair roots can be of two types: the first contains 
just one of the xylem-only quadrants; roots of the second type bear one of the xylem-plus-
phloem-containing quadrants (which include one sieve tube plus a strand of companion cells, and 
one file of tracheids). We presume that the single xylem-containing quadrant could not support 
much root growth, and so roots of this first type are expected to have a limited life. By contrast, 
one xylem-plus-phloem-containing quadrant can evidently support viable root extension and 
solute uptake, as well as providing an integrated ‘nervous’ function for the plant. 

Although aspects of our analysis pertaining to hair roots are somewhat conjectural owing 
to lack of direct evidence from this material, especially from the crucial embryogenic stages of 
development, we suggest that a root which contains only one of the four plerome quadrants has 
had three of its plerome stem cells deleted sometime after the establishment of the complete 
root organ either in the embryo or in a lateral root primordium. The remaining single plerome 
stem cell can support development of a root if the tissue derived from it includes phloem. 
However, such a root has a much reduced diameter – i.e. it is a hair root. This putative stem-cell 
death scenario reminds us of that which attends animal neural tissue development [5]. 

The continued differentiation and penetration of plerome into the growing hair-root 
apex, even after much of the usual plerome tissue complement has been deleted, is due to the 
phenomenon of homeogenetic induction [6, 7]. This process allows the retention of a diminished 
plerome, but one that possesses a neuronally active xylem-plus-phloem quadrant. 
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Mechanisms of magnetoreception in plants and fungi 
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The ability to respond to magnetic fields is ubiquitous among the five kindoms of organisms. 
Apart from the mechanisms that are at work in bacterial magnetotaxis (ferrimagnetism) none of 
the numerous magnetobiological effects is as yet completely understood in terms of the 
underlying physical principles. Plants react in many ways to the geomagnetic field and to strong 
continuous as well as alternating magnetic fields (Galland and Pazur 2005). Because of a lack of 
model organisms and model reactions the magnetobiology of plants, fungi and microorganisms 
has remained largely on a phenomenological level. The problem is compounded by the fact that 
magnetic effects are observed for a huge range of magnetic flux densities that cover more than 
10 orders of magnitude. To come to grips with such a huge dynamic range which is similar to 
that of human vision and numerous photoresponses of plants one would expect the study of 
dose-response relationships to be of paramount importance. It comes thus as a surprise that such 
studies are practically nonexistent. They would be particularly needed in view of the fact that 
responses are elicited by weak magnetic fields, such as the geomagnetic field, whose energy 
content is several orders of magnitude below the thermal energy content (kT- paradox). As a 
result most of the studies are characterized by a lack of mechanistic insight even though physics 
provides several theories that serve as guideposts for biological experimentation and that offer 
solutions for the kT-paradox. 

Beside ferrimagnetism, which is well proven for bacterial magnetotaxis and some cases of 
animal navigation, three further mechanisms for magnetoreception receive currently major attention: 
(i) the “radical-pair mechanism” consisting in the modulation of singlet-triplet interconversion 
rates of a radical pair by weak magnetic fields, and (ii) the “ion cyclotron resonance” 
mechanism, and (iii) the “coherence” mechanism. Recent studies with Arabidopsis (Ahmad et al. 
2007) and Phycomyces show that blue-light reception and magnetoreception are intimately 
connected, an observation that is best explained in the context of the radical-pair mechanism.  
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The giant (2-10 cm long, 0.5-1.0 mm wide) internodal cells of Chara corallina provide a simple, 
easily manipulated tool for investigating responses to environmental stimuli in single cells.  We 
have identified three responses to environmental stimuli: polarity of cytoplasmic streaming 
induced in response to gravity or hydrostatic pressure; action potential generation in response to 
mechanical or electrical stimulation and; tropistic growth in response to light and gravity. 

As can be predicted by their large size, Chara internodal cells exhibit a rapid (ca. 100 μm s-1) 
rotational cytoplasmic streaming. Streaming proceeds at equal rates basipetally and acropetally 
in horizontal cells. In contrast, gravity induces a polarity of cytoplasmic streaming in vertically-
oriented cells such that the downwardly-directed stream moves ca. 10% faster than the 
upwardly-directed stream – regardless of the morphological identity of the cell ends. This 
gravity-induced polarity of cytoplasmic streaming can be mimicked by the application of a 
unilateral hydrostatic pressure to either end of a horizontal cell. Hydrostatic pressure applied to 
the bottom of a vertically-oriented cell can eliminate or even reverse the gravity-induced 
response. The induction of a polarity of cytoplasmic streaming by both gravitational pressure 
and hydrostatic pressure is Ca2+-dependent and requires both ends of the cell to be intact. 

Cytoplasmic streaming in Chara internodal cells ceases in response to an action potential. 
The ability of electrical and mechanical stimulations to generate action potentials in Chara is 
Ca2+-dependent and the response to each stimulus may be inhibited in a similar way by Ca2+ 
antagonists. Since ligated cells exhibit cessation of cytoplasmic streaming in response to mechanical 
and electrical stimulation, intact cell ends are not required for this response. 

Chara internodal cells exhibit tropistic growth in response to both light and gravity signals. In 
the absence of light, Chara internodal cells are negatively gravitropic. A light stimulus, opposite 
to the vector of gravity, will induce phototropic growth which will inhibit (at a flux of ca. 1 μmol m-2 s-1) 
or reverse (at a higher flux) the gravity-induced response. Intact cell ends are required for 
gravitropism but not photropism of internodal cells. 

Because of their large size and responsiveness to environmental stimuli, the internodal 
cells of Chara are particularly suited as a model system to elucidate signal transduction pathways in 
plants. Some progress in revealing insights into interactions between signal transduction pathways in 
these cells will be discussed.  
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Roles of endocytosis regulation in plant physiology and development 
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Crucial roles of endocytosis in various plant functions are emerging recently, but its molecular 
mechanism and physiological significance still remain largely unknown. Using a model plant, 
Arabidopsis thaliana, we have been studying the molecular mechanism of endocytosis with a 
special focus on Rab5 GTPases. Three Rab5 members, Ara7, Rha1 and Ara6, are encoded in the 
Arabidopsis genome, which are all involved in endocytosis. Ara7 and Rha1 are orthologs of 
mammalian Rab5, and Ara6 is a plant-unique type of Rab5 member. Through genetic analysis, we 
have found that these two subgroups function antagonistically in various developmental stages, 
although they are all activated by the practically sole GEF, AtVps9a. Moss and spikemoss also 
have the Ara6-type Rab5, thus this subgroup is well conserved among land plants. These data 
indicate that land plants have evolved a quite unique mechanism for the regulation of endocytosis, 
which is essential for the plant life. 
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The exocyst is a hetero-oligomeric protein complex involved in exocytosis and has been 
extensively studied in yeast and animal cells. Current analyses of mutations in genes encoding 
plant homologs of three subunits (A. thaliana SEC8, EXO70A1, and maize sec3) support the 
notion that an exocyst complex is also present in plant cells. Our bioinformatic analysis revealed 
that the Arabidopsis genome contains 23 EXO70 genes. Based on expression analysis, we 
identified EXO70A1 as the main EXO70 gene in Arabidopsis. We characterized two independent 
T-DNA insertional mutants in EXO70A1 gene. Heterozygous EXO70A1/exo70A1 plants appear 
normal and segregate in the 1:2:1 ratio. However, exo70A1 homozygotes exhibit multiple 
phenotypic defects. Polar growth of root hairs and stigmatic papillae is disturbed. Organs are 
generally smaller, plants show loss of apical dominance and an indeterminate growth where 
instead of floral meristems new lateral inflorescences are initiated in a reiterative manner. Both 
exo70A1 mutants have dramatically reduced fertility. These results suggest that EXO70A1, the 
putative exocyst subunit, is involved in cell and organ morphogenesis.  
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Ondřej Krinke1, Jan Martinec2 

1 Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 
Technická 3, 166 28 Prague 6, Czech Republic 
2 Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, Rozvojová 
263, 165 02 Prague 6, Czech Republic  

Email: martinec@ueb.cas.cz 

Our research is supported by Ministry of Education, Youth and Sports, grants No. LC 06034.  
 
The receptor for D-myo-inositol 1,4,5-trisphosphate (InsP3-R) has been well documented in 
animal cells. It constitutes an important component of the intracellular calcium signalling 
system. Today the corresponding genes in many species have been sequenced and the antibodies 
against some of the InsP3-Rs are available.To the contrary very little is known about its plant 
counterpart. Only few published works have dealt directly with this topic. We have summarized 
the available relevant data and figured out some properties of the putative plant receptor(s) 
including the in vivo evidence, its electrophysiology, parameters of the InsP3-induced calcium 
release and InsP3 binding, its immunological cross-reactivity and its subcellular localization. 
Phosphatidylinositol-specific phospholipase C is undoubtedly parts of plant signalling pathways. 
Nevertheless, it is not sure that the InsP3-R is present in plant cells unless any corresponding 
gene is identified. 
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Guard cells have been developed as a model system for dissecting ion channel functions and 
regulation mechanisms.  Previous studies have shown that two classes of calcium-induced  
stomatal closing can be separated: rapid Ca2+ reactive and long term Ca2+ programmed 
stomatal closing (G. Allen et al., 2001, Nature 411). However, genetic evidence has been lacking 
for Ca2+  sensor mutants that disrupt Ca2+- and abscisic acid-regulated stomatal movements. In 
addition, a Ca2+-independent pathway functions in the abscisic acid (ABA) response. We have 
recently identified two calcium-dependent protein kinases (CDPKs) that function in abscisic acid 
(ABA) and Ca2+ regulation of guard cell ion channels and stomatal closing (I. Mori et al., 2006 
PLoS Biol.). Furthermore, several independent signal transduction analyses suggest a new model 
for how plant cells can achieve specificity in calcium signaling through “priming” and “de-
priming” of Ca2+ sensitive mechanisms (J. Young et al., 2006 PNAS). Further evidence that 
correlates with this “Ca2+ sensor priming” hypothesis will be presented. An important target of 
ABA and cytosolic Ca2+ signaling is the activation of S-type anion channels in guard cells. Progress 
at identifying new genes that are essential for mediating this response will be presented. 
Evidence for a parallel pathway that functions in the ABA signaling network will also be 
presented. 

Genetic, genomic and signal transduction analyses in several laboratories indicate that 
genetic redundancies and robustness exist within the abscisic acid signal transduction network. 
To address this complexity we have pursued gain-of-function genetic screens (e.g. J. Kuhn et al., 
2006 Pl. Physiol.) and genomic approaches (e.g. N. Leonhardt et al., 2004 Pl Cell; Mori et al., 
2006 PLoS Biol.). More recently we have developed a chemical genetics approach that allows 
high-throughput screening for molecules and mutants that affect ABA signal transduction. 
Progress at isolating a small molecule that blocks ABA responses and isolation and characterization 
of mutants in ABA signaling that are insensitive to this compound will be presented. 
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In plants, anisotropic cell expansion is a tightly regulated process that contributes to morphogenesis. 
In addition to modulating overall growth rates, this process orchestrates directional growth responses 
to environmental cues, allowing plant organs to grow toward environments that are better suited 
for their primary functions. A screening for Arabidopsis thaliana mutants displaying defective 
seedling-root growth behavior on hard surfaces allowed us to identify WVD2, a gene that regulates 
both anisotropic cell expansion and the spiral growth of most organs. WVD2 over-expressing 
plants also display enhanced thigmomorphogenesis and sensitivity to salt and sucrose treatments, 
suggesting a role in the transduction of these signals. WVD2 encodes a microtubule (MT)-binding 
protein that promotes the bundling of MTs in vitro, and affects the organization of cortical MTs 
in expanding cells of the root (Yuen et al, 2003; Perrin et al, 2006). This protein shares a 95 
amino-acid motif with 7 other Arabidopsis proteins, and initial phenotypic analyses of mutants 
that either over-express or are defective in one or several of these genes suggest distinct, 
though overlapping, roles for the WDL proteins in the regulation of MT-dependent morphological 
processes. We hypothesize that WVD2 and related WDL proteins contribute to the control of 
organs growth behavior in response to environmental and endogenous cues by regulating the 
organization and/or dynamic properties of cortical MTs in expanding cells, thereby modulating 
the patterns of anisotropic cell expansion. 
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At the end of XX century, Phil Lintilhac, discussing various concepts of cellularity, proposed that 
the idea of the basic unit of life could be reduced to “event surface” – the boundary separating 
internum from externum (Lintilhac 1999). Autopetic theory added one additional requirement to 
this concept: the boundary has to be constructed and maintained by the living system itself 
(Varela et al. 1974). Here, we will use these metaphors as a useful tool for description of some 
of the functionalities of the cell wall-plasma membrane-cytoskeleton (WMC) continuum with 
special attention paid to the plant wall component. 

Cell walls are the outermost functional zone of plant cells. Although they surround the 
individual cells, at the same time they form a part of supracellular structure – the apoplast. In 
suspension-cultured cells, cell walls are also embedded in the culture medium which can be thought 
of as a kind of superapoplast. Cell walls have been usually considered as a structural component 
of the cell and of the plant. Here we would like to draw attention to other wall functions, namely 
the signalling one and that of physical anchor for other cellular components. To illustrate this, 
some recent data indicating the possibility of extracellular generation of signals affecting the cell 
fate will be presented. Moreover, potential other routes for auxin transport will also be discussed. On 
the other hand, we will also present data showing that the WMC continuum can be treated as a 
complex sensory medium detecting and transmitting information from the walls to the cytoskeleton 
for signalling and regulation. 
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Although many aspects of multicellularity differ between plants and animals, both feature 
groups of cells that enable indeterminate patterns of cell division and growth.  In an effort to 
understand how the behaviour of these cells is regulated, we review different types of 
meristematic tissues in higher plants, with a particular focus on the shoot and root apical 
meristems (SAM and RAM) (1).  We consider whether concepts developed to explain stem cell 
behaviour in animals may also have relvance to plants, particularly with regard to how such 
groups of cells are established and maintained.  Molecular genetic data is reviewed that suggests 
that while the establishment and organogenic related functions of the SAM and RAM differ, 
conserved mechanisms operate that help maintain initial cells in a pluripotent state.  Finally we 
consider how a unique plant specific family of RNA binding proteins, termed MEI2-like, may function 
as part of larger signalling networks to regulate differentiaton related processes (2,3,4). 
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It has been clear that the precursors and breakdown products of both chlorophyll and heme, 
such as porphyrins and related molecules, are extremely phototoxic; thus, their synthesis and 
degradation are highly compartmentalized and regulated. Accumulation of porphyrin compounds 
is known to cause cell death in both plants and animals. Moreover, ceramides and their related 
sphingolipid derivatives are bioactive lipids that play important roles as second messengers and 
as dampening signals for apoptosis in animals (Hannun and Obeid 2002). In an effort to search 
plant programmed cell death (PCD) triggers, we used Arabidopsis two mutants termed 
accelerated cell death 2 (acd2) and acd5. ACD2 and ACD5 encode red chlorophyll catabolite 
(RCC) reductase (Mach et al., 2001) and ceramide kinase (Liang et al., 2003), respectively. We 
found that protoporphyrin IX (PPIX, a precursor to heme and chlorophyll) and C2 ceramide 
trigger an apoptotic-like response in Arabidopsis protoplasts (Liang et al., 2003; Yao et al., 
2004). PPIX was enhanced in ACD2-deficient plants and reduced in ACD2-overexpressing plants, 
indicating that PPIX triggers apoptotic cell death dependent on ACD2. Furthermore, PPIX 
induced altered ACD2 localization and levels (Yao et al., 2006). We also found that C2 ceramide 
induced PCD via its effect on mitochondrial permeability transition. The data suggest that a 
mitochondrial membrane potential loss was commonly induced early during plant PCD and was 
important for PCD execution, as evidenced by the concomitant reduction of the change in 
mitochondrial membrane potential and PCD by cyclosporin A. Our data suggest that RCC (and 
related porphyrin compounds such as PPIX) and ceramides are endogenous cell death triggers. 
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Nuclear-encoded plastidial proteins are usually synthesized in the cytosol and posttranslationally 
imported into the organelle. However, recent our investigations revealed that some starch 
metabolism-related enzymes are transported into the plastid through unusual pathway. A rice 
novel ADP-glucose hydrolytic nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) was shown to 
be glycosylated, since it contains numerous N-glycosylation sites, binds to Concanavalin A, stains 
with periodic acid-Schiff reagent and can be digested by Endo-H. Both immunocytochemical 
analyses and confocal-fluorescence microscopy of rice cells expressing NPP1-GFP revealed that 
NPP1 occurs in the plastidial compartment. Brefeldin A treatment to NPP1-GFP expressing cells 
prevented NPP1-GFP accumulation in the chloroplasts (Nanjo et al. 2006). Rice α-amylase I-1 
(AmyI-1) is a well-known secretory enzyme bearing typical N-linked oligosaccharide chain. We 
found that AmyI-1 also occurs in the plastids in living rice cells (Asatsuma et al. 2005). In the 
targeting of AmyI-1, the effects of the dominant mutants of AtSAR1 and AtARF1 GTPases, which 
are engaged in the protein traffic from the ER to the Golgi apparatus, were tested in onion epidermal 
cells. These AtARF1 and AtSAR1 mutants severely arrested the targeting of AmyI-1 into plastids. 
These experiments provide strong evidence that the plastidial N-glycosylated glycoproteins are 
transported from the Golgi to the plastid through the secretory pathway in rice cells. 
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Plant growth and development are dependent on the tight regulation of water uptake and 
transport across cellular membranes and tissues. This water movement can be controlled by the 
regulation of water channels or aquaporins. These channels are widespread in biological membranes 
and plant aquaporins are believed to act as “cellular plumbers” allowing plants to rapidly alter 
the membrane permeability in response to environmental cues (Hachez et al., 2006). In addition, 
plant aquaporins can also facilitate the transport of other important molecules such as CO2, 
ammonia, H2O2, boron and silicon. 

Recent data indicate that plant aquaporins are regulated by many different mechanisms 
modifying their subcellular localization and gating (Chaumont et al., 2005; Tornroth-Horsefield 
et al., 2006). The factors affecting aquaporin trafficking and gating behavior possibly involve 
phosphorylation, heteromerization, pH, calcium, pressure, solute gradient, temperature. For instance, 
plasma membrane aquaporins (PIP) are phosphorylated by calcium-dependent protein kinases 
resulting in the pore opening and an increase of the water channel activity. Interestingly, high 
osmotic pressure in the apoplast induces a decrease in the phosphorylation status of PIPs, 
probably preventing water exit from the cells. We also recently showed that non-functional and 
functional PIPs form heteromers in oocytes and plant cells leading to a relocalization of inactive 
PIPs from the secretory pathways to the plasma membrane. 

Recent progress in the elucidation of plant aquaporin regulation and cell signaling will be 
discussed. 
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The production of reactive oxygen species (ROS) is the natural consequence of aerobic 
metabolism. ROS are inter-convertible molecules with various degrees of reactivity and the 
potential to damage cellular components such as lipids, nucleic acids and proteins. Hydrogen 
peroxide (H2O2) is a rather stable ROS and has recently been shown to be involved in various 
signaling pathways. To minimize potential damage by ROS and to control a signaling role of H2O2 
and other ROS, the concentration of ROS has to be tightly regulated. Such control may involve 
mechanisms of production and scavenging as well as transport across membranes. Mechanisms 
for production and scavenging have been studied in great detail. However, the aspect of 
transport of H2O2 is of particular interest, because a mechanism of transport is part of the 
definition of signaling molecules. 

Until recently it was assumed that H2O2 crosses the membrane by simple diffusion. 
Contrary to the concept of simple diffusion it was suggested that water channels facilitate the 
diffusion of H2O2. Henzler and Steudle (2000) showed that mercury, an aquaporin blocker, 
repressed H2O2 accumulation in internodial cells of the algae Chara corallina. The authors 
therefore suggested that some aquaporins in Chara served as peroxoporins. 

We have used the heterologous expression system yeast to test the hypothesis that 
specific aquaporins may flux H2O2 across membranes. Yeast is a very useful tool for this type of 
study, since many mutants are available that differ in the ability to metabolize and detoxify 
ROS. This allowed us to control the scavenging capacity of the yeast cells while asking the 
question, if the heterologous expression of aquaporins increased the sensitivity to externally 
supplied H2O2. In a comprehensive screen testing 24 aquaporin isoforms from plants and 
mammals we found that expression of plant aquaporins of the TIP1 group and human AQP8 
increased the sensitivity of yeast cells towards H2O2 in the medium. Aquaporin-mediated H2O2 
transport was further investigated in a fluorescence assay with intact yeast cells using an 
intracellular ROS-sensitive fluorescent dye. Our data provide molecular genetic evidence that 
human AQP8 and plant aquaporin AtTIP1 have the potential to facilitate the diffusion of H2O2 
across membranes. 

The challenge is now to demonstrate a physiological role of hydrogen peroxide transport 
through aquaporins. We will present current strategies. 
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Glutamate is one of 20 proteogenic amino acids, and serves as an acceptor molecule in primary 
ammonium assimilation in plants. It is also one of five major translocated amino acids found in 
phloem and xylem. Metabolism and synthesis of glutamate by enzymes such as glutamine 
synthetase (GLN1) and asparagine synthetase (ASN1) are regulated by light, carbon and nitrogen, 
suggesting that the regulation of glutamate level plays a significant role in the control of C/N 
balance in plants. 

In addition to its role as a nutrient and nitrogen transportation form in plants, glutamate 
might play a role in intracellular signaling. Externally applied glutamate induces membrane 
depolarization and cytosolic calcium spikes. Arabidopsis genome encodes for 20 putative glutamate 
receptor homologs, and the disruption of one of these glutamate receptors, GLR3.3, partially abolishes 
membrane depolarization and cytosolic calcium spikes (Qi et al. 2006). AtGLR1.1 deficient plants 
(antiAtGLR1.1) exhibit conditional germination phenotype that is sensitive to C:N ratio in the 
growth media (Kang and Turano 2003). 

The role of glutamate as a signaling molecule, however, is unclear. For most plant glutamate 
receptors the ligand specificity has not been identified. In addition, it is not known whether 
plants have mechanism that control local glutamate concentration. In order to understand the 
role of glutamate and glutamate receptors in plants, it is important to know the glutamate level 
in specific cell types or in subcellular compartments. A method to measure the concentration of 
glutamate in all cell types would provide valuable information. We have developed a protein-
based, Fluorescence Resonance Energy Transfer (FRET) nanosensors for glutamate (Okumoto et 
al. 2005). Glutamate sensors, when expressed in mammalian cells, were able to detect real-time 
glutamate concentration change. 

Results from Arabidopsis plants expressing glutamate sensors anchored to the outside of 
the plasma membrane suggest that these sensors can detect glutamate concentration changes in 
the apoplast. We will introduce a new technique for the analysis of in vivo glutamate fluxes in 
plants and discuss our latest results. 
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GABA metabolism is compartmentalized. Anabolism takes place in the cytosol and catabolism 
occurs in mitochondria. The GABA catabolic succinic semialdehyde dehydrogenase (ssadh) 
mutant is strongly impaired in growth, most likely due to the accumulation of a toxic compound. 
The ssadh phenotype can be rescued by simultaneously knocking out the GABA-transaminase 
(gaba-t) gene, the gene upstream in GABA catabolism. This phenotype suppression can be explained 
by preventing a toxic intermediate to accumulate in double knock-out plants. 

Based on this finding and searching for unknown genes that are involved in GABA metabolism, 
an ssadh suppressor screen has been performed, where ssadh mutants have been mutagenized 
using EMS. Under short day conditions, unlike normal growth conditions, ssadh/gaba-t double 
mutants display a phenotype that resembles the one of ssadh mutants. To explain this phenotype, a 
second suppressor screen has been performed, mutagenizing ssadh/gaba-t double knock-out 
plants with EMS. Suppressor mutants of either screen have been collected and are currently 
analyzed. Ultimately, rescueing EMS mutations will be mapped and cloned to assign functions to 
the respective genes in GABA metabolism or regulation of the pathway. 

To further gather more information on the GABA pathway in plants, a recombinant inbred 
line (RIL) analysis was performed. RILs were grown in the presence of potentially toxic intermediates 
of the pathway to determine quantitative trait loci (QTLs) for resistance/sensitivity against/for 
the respective substances. Overlapping findings with those of suppressor screens are deliberately 
taken into account.  
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The plant genus Scutellaria is a rich source of neurologically active phytochemicals and 
treatments for a wide range of human diseases including cancers, neurological disease, fevers 
and immune system dysfunction. Very few of the 350 species in this genus have been extensively 
studied, but there is traditional and ethnobotanical evidence of efficacy of Scutellaria species 
from around the world. The objective of the current study was to compare the phytochemical 
diversity in three species of Scutellaria from vastly different geographical locations and 
ecosystems. Metabolomic analysis revealed that the Chinese species, Scutellaria baicalensis had 
1388 compounds that were not present in extracts of the other species. The North American 
Scutellaria lateriflora had a spectrum of 1261 unique compounds while the Central and South 
American species Scutellaria racemosa had 1733 unique phytochemicals. Equally interesting was 
the conserved phytochemistry. The neurotransmitters, melatonin and serotonin, were found in 
all three Scutellaria species. The neuroprotectant wogonin was also found in all 3 species of 
Scutellaria along with the flavonoids, baicalin, baicalein, and scutellarin. Wogonin was found at 
the highest levels in Scutellaria racemosa, a plant with traditional indigenous use as a narcotic. 
Recent studies with animal models indicate neuroprotective capacityin extracts from this 
species. The presence and conservation of neurologically active phytochemicals across plants 
from different geographical locations and ecosystems may provide new opportunities for studies 
of their potential role in plant adaptation and plant development. 
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Plant hormones are suitable candidates to function as continuous signals between roots and 
arbuscular mycorrhizal (AM) fungi during the establishment of symbiosis. Auxins might play a role 
during early events of an arbuscular mycorrhizal association with respect to changes in root 
morphology and gene expression. As examples several different plant-AM fungus systems will be 
compared. Inoculation of Zea mays with Glomus intraradices resulted in the significant increase 
in the percentage of lateral roots during early stages of colonization which coincided with an 
increase in the levels of the auxin indole-3-butyric acid (IBA). Addition of TFIBA, an inhibitor of 
IBA-induced root growth and lateral root induction, to roots inoculated with AM-fungi reduced 
the formation of fine roots and the amount of endogenous free IBA as well as the percentage of 
colonization. The increase in IBA levels was accompanied by increased enzymatic synthesis of 
IBA. In the model legume Medicago truncatula IBA was also induced during AM. Transcripts from 
Medicago truncatula roots differentially induced by IBA and AM were identified by microarray 
analysis. A small set of genes was simultaneously regulated by both factors. We have validated 
the expression levels of several transcripts by RT-PCR and found up-regulation of a 
leghemoglobin by IBA and AM and down-regulation of a high-affinity nitrate transporter by both 
factors. A model will be presented which summarizes the possible effects of plant hormones, 
especially auxins, during AM symbiosis. 
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The only plant cytosolic phospholipase A form is the iPLA2 or patatin-related PLA around which 
our work centers. Auxin increases phospholipase A activity within 2 min (Paul et al. (1998) Plant 
J. 16: 601-611) and phospholipase A inhibitors, ETYA and HELSS, inhibited PLA activation and 
elongation growth of etiolated Arabidopsis hypoctyls (Holk et al. (2002) Plant Physiol. 130: 90-
101). To identify the mode of action, rapid auxin-regulated gene expression was tested for 
sensitivity to PLA2 inhibitors using seedlings harbouring the synthetic auxin-responsive reporter 
DR5::GUS. ETYA and HELSS inhibited auxin-induced increases in GUS activity, the steady-state 
level of the corresponding GUS mRNA and the mRNAs encoded by auxin-activated genes (IAA1, 
IAA5, and ARF19).  Auxin regulation of the steady-state level of Aux/IAA proteins is mediated by 
the auxin receptor, E3 ubiquitin ligase, TIR1. The velocity of the auxin-induced decrease of an 
IAA1-luciferase fusion protein was unaltered by ETYA and HELSS during the first 20 minutes when 
biosynthesis of IAA1-luciferase was prevented by cycloheximide addition. In kinetics of auxin-
induced degradation IAA1-luciferase measured without cycloheximide these inhibitors blocked 
the auxin-induced decrease in steady-state levels. When two phospholipase A genes were over-
expressed in the DR5-GUS background the sensitivity of DR5 promoter to auxin was greatly 
increased. The results here suggest that phospholipase A mediates auxin-regulated gene 
transcription via a receptor other than TIR1 and may act upstream of TIR1. 

Knockout lines for the PLA genes AtPLA I, AtPLA IVA, and AtPLA IVC were isolated and 
found to be damaged in typical auxin-related functions. The knockout for AtPLA I is expressed in 
vascular tissue in stems, roots and leaf veins, additionally in pollen and trichomes. The 
corresponding knockout plants are defect in gravitropism, phototropism, nutation and root tip 
coiling. The slower response to laterally applied auxin of the AtPLA I knockout suggests a 
regulatory function of PLA I of auxin transport. The AtPLA IVA is expressed strongly in the root 
and the knockout for AtPLA IVA is defect in side root formation suggesting a function in auxin-
stimulated side root formation. The gene AtPLA IVC is expressed in the gynaecium. With ABA 
treatment expression of PLA IVC is enhanced in roots and in veins in the shoot. The knockout 
shows a defect in the response of the root to phosphate starvation. The main root growth is not 
repressed but side roots are, contrary to the wild type response. Phosphate starvation affects 
auxin transport which may be disturbed in the pla IVC mutant. The hyocotyl is elongated in 
these knockouts pointing out a relevance to cell elongation for PLA IVC. 

Taken together, the phenotypes of PLA knockout plants point out their function in auxin 
signalling. PLA is involved in the regulation of early auxin genes. The receptor, however, may 
not be TIR1.  
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Formins (FH2 proteins) are ancient actin-binding proteins believed to participate in actin filament 
nucleation. They are defined by the hallmark FH2 domain, usually preceded by a Pro-rich FH1 
region. In addition, metazoan, fungal and Dictyostelium formins often contain a N-terminal 
GTPase-binding domain mediating interaction with Rho GTPases. In angiosperms, two groups of 
formins can be defined on the basis of FH2 domain sequence; each group also exhibits typical 
domain architecture. Class I formins are usually transmembrane proteins, while Class II formins 
often possess a PTEN-related domain that might also mediate membrane association. Thus, 
formins are good candidates for a link between the actin cytoskeleton and the surface structures 
of the plant cell. We have performed a thorough analysis of over 100 plant FH2 protein sequences, 
as well as more than 120 formins encoded by fully sequenced non-plant genomes representing 
the metazoans, fungi, amoebae, chromalveolates and excavates. The characteristic plant Class I 
and Class II formins are indeed both universal for the plant kingdom. Moreover, we found a novel 
domain combination including a RhoGAP domain, present in some algal, moss and lycophyte formins 
(but absent in angiosperms), suggesting an ancient formin-mediated functional association between 
Rho GTPases and the actin cytoskeleton. 
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Phospholipids are essential molecules contributing to the structural definition of cell membranes 
and participating in the regulation of cellular processes as signaling molecules and reservoirs of 
lipid messengers. While the bigger pools of phospholipids are involved in membrane structure, 
those involved in cell signalling are usually very small and consequently have been failed to be 
picked-up for years. Especially polyphosphoinositides (PPI) and phosphatidic acid (PA) have  been 
emerging as signalling molecules. 

Over the last few years, we and others have shown that a number of pathways involved in 
their metabolism, are activated in response to a wide variety of biotic- and abiotic stresses (see 
reviews). In general, these activations are fast (seconds to minutes) and the lipid responses small 
and transient, exhibiting rapid turnover. ‘How’ these pathways are activated, ‘where’ in the cell 
or plant this takes place, and ‘what’ the functional significance of these activations are, is still a 
big mystery. To start addressing these questions, a number of opportunities are being explored 
in my laboratory. These include, i) Arabidopsis T-DNA insertion lines, ii) GFP-based lipid biosensors 
and iii) proteomic approaches to identify PA targets. Some recent developments in these areas 
will be discussed. 
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Each individual plant cell has the potential to become a whole plant through a process of 
dedifferentiation, redifferentiation and tissue regeneration. It has been hypothesized that this 
process is induced by alterations in the balance of two classes of plant growth regulating 
compounds viz. auxin and cytokinin but the exact mechanisms by which these compounds induce 
plant cell division is not known. In previous research, we have shown that mediation of 
endogenous neurotransmitter metabolism impaired plant regenerative functions but exogenous 
application of human neurohormones did not alter plant growth. In this communication, we show 
for the first time, that exogenous application of the human neurohormone serotonin induced 
three different developmental pathways in isolated tobacco mesophyll cells: (1) changes in cell 
structure including formation of pearl-necklace and torpedo-like cells, (2) low-frequency cell 
division, and (3) high frequency cell division followed by callogenesis when combined with auxin. 
These data provide the first evidence that serotonin acts as a growth regulator in plant cells and 
that synthetic auxin induces serotonin-melatonin production, potentially as a precursor to the 
indoleamine biosynthetic pathway. 
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Jasmonates representing a group of oxylipin phytohormones are shown here to differentially 
induce changes in intracellular Ca2+ concentrations in two distinct compartments of plant cells, 
the cytosol and the nucleus. Based on the Aequorin technique, a structure-activity analysis 
revealed that jasmonates and related compounds fall into three distinct classes: (1) compounds 
inducing Ca2+ changes in both the cytosol and the nucleus (2) compounds inactive on either 
compartment or (3) compounds acting selectively on the nucleus. 
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Our recent results show that tip-localised ROS produced by a NOX enzyme are needed to sustain 
the normal rate of pollen tube growth. As in root hairs and growing root cells the same 
phenomenon is observed, it is likely that this activity is a general mechanism related to plant 
cells expansion. The regulation of NOX activity is also in plants related to the Rac/Rop GTPases 
activity and calcium signalling; and signalling relay involving ROS is well documented in plants. 
Here we will discuss possible significance of NOX activity in electrogenic processes at the 
growing plant cell domain. 
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Plant peroxisomes are highly dynamic organelles that play pivotal roles in development and in 
stress response. To establish a model for peroxisome proliferation in plants, which is largely unknown, 
we have taken forward and reverse genetic and proteomic approaches using Arabidopsis thaliana. 
Except for Pex11p, which in yeast is involved in peroxisome proliferation with an unknown mechanism, 
the Arabidopsis genome does not contain obvious sequence homologues to most proteins that 
operate in yeast to control peroxisome proliferation. The five-member Arabidopsis PEX11 protein 
family is composed of three subfamilies: PEX11a, PEX11b, and PEX11c to PEX11e, all of which 
target to peroxisomes, as demonstrated by fluorescence microscopy and immunobiochemical 
analysis. Overexpression of At PEX11 genes in Arabidopsis increased peroxisome elongation and 
number, whereas reduction in gene expression lowered peroxisome abundance. PEX11c and 
PEX11e partially complemented the growth phenotype of the S. cerevisiae pex11 null mutant on 
oleic acid. Our results suggested that the Arabidopsis PEX11 proteins promote peroxisome 
proliferation with some functional specificity between subfamilies (Orth et al. 2007 Plant Cell). 
Using genetic screens and proteomic analysis of the peroxisome membrane, we also identified a 
subset of the dynamin-related large GTPases that mediates the division of both peroxisomes and 
mitochondria. These data indicated that despite their distinct evolutionary paths, peroxisomes and 
mitochondria may use the same set of dynamin-related proteins (DRPs) for division. Additional 
forward genetic screens and proteomic experiments are conducted in the lab to uncover more 
plant-specific components of the peroxisome proliferation machinery. 
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Mitochondria are dynamic organelles providing subcellular spatial energy as needed and serving 
as fundamental elements in intracellular signalings in plant cells. However the nature of the 
mitochondria-cytoskeleton interactions in pollen tubes has not been explored. By using time lapse 
confocal microscopy, total internal reflection fluorescence microscopy (TIRFM) and spinning-disk 
confocal microscopy (SDCM), we investigated the effects of cytoskeletal inhibitors on the 
transportation and positioning of mitochondria in living pollen tubes. It was revealed that the 
actin filament disrupting drug latrunculin B (LATB), the myosin ATPase inhibitor, 2, 3-butanedione 
2-monoxime (BDM) and the actin filament stabilizing drug jasplakinolide (Jas), apparently 
inhibited mitochondrial motility, while microtubule disrupting drug taxol and oryzalin showed 
slight effects, demonstrating that intact actin cytoskeleton is required for active mitochondrial 
movement. Two-dimensional (2-D) trajectory and velocity of individual mitochondrion was obtained 
to characterize the mitochondrial movement. It was showed that mitochondria of Picea wilsonii 
pollen tubes underwent three classes of linear movements: rapid movement (> 5.0 μm/s instantaneous 
velocities), slow movement (<5.0 μm/s instantaneous velocities) and mixed movement (ranging 
from 0.16 to 10.35 μm/s instantaneous velocities). Jas treatment abolished mixed mitochondrial 
movement and rapid mitochondrial movement, while rapid movement and slow movement were 
not found in BDM-treated pollen tubes. Taxol treatment increased the frequency of positioning and 
velocities of mixed mitochondrial movement. Oryzalin treatment caused curve mitochondrial 
trajectories with similar velocities compared to the control pollen tubes. Taken together, these 
findings suggested that actin cables provided tracks for mitochondrial slow movement which are 
powered by myosin, on the other hand, actin cables also served as “conveyor belts” to drive 
mitochondrial mixed movements via actin polymerization. Therefore, microtubule dynamics regulated 
mitochondrial positioning, velocities and trajectories via affecting the actin filament dynamics, 
rigidity and flexibility.  
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Horizontal placement of snapdragon (Antirrhinum majus L.) flowering shoots initiates an upward 
gravitropic bending via the chain reaction of gravity perception, signal transduction and growth 
response (Philosoph-Hadas et al. 1996, Friedman et al. 1998, 2003). Our previous studies (Friedman 
et al. 2003) have demonstrated that the actin cytoskeleton within the cells of snapdragon 
(Antirrhinum majus L.) spikes is necessary for normal amyloplast displacement upon gravistimulation. 
Pharmacological disruption of the actin cytoskeleton with cytochalasin D (CD), demonstrated in 
cortical and endodermal cells, and with latrunculin B (Lat B), demonstrated in cortical cells, 
delayed the displacement of amyloplasts and resulted in a significant inhibition of the gravitropic 
bending. 

In the present study we have investigated the involvement of myosin in addition to actin 
in the different phases of the gravitropic response of snapdragon spikes. Using indirect 
immunofluorescence double-labeling of actin and myosin, we have demonstrated that no 
organization changes in actin filaments occurred in cortical and endodermal cells of the stem 
bending zone during gravistimulation. These results suggest that actin depolymerization is not 
required for amyloplast sedimentation. The amyloplasts in the endodermis were found to be 
surrounded by actin and myosin, and seem to be attached to the actin filaments via the motor 
protein, myosin. This suggests the involvement of myosin in amyloplast translocation. This 
suggestion was supported by the findings showing that pulsing spikes with the myosin inhibitor, 
2,3-butanedione-2-monoxime (BDM), inhibited the gravity-induced amyloplast displacement in 
the endodermis. Indeed, the BDM treatment altered characteristic distribution patterns of 
myosin-like proteins in the cortex and disrupted the normal organization of the actin network 
and microtubules. This further indicates that myosin functions in the normal actin network 
organization. Both BDM and CD inhibited lateral auxin transport and stem bending. It seems 
therefore, that the inhibitors which affect amyloplast displacement also inhibit the subsequent 
event of lateral auxin transport leading to inhibition of stem bending. Taken together, our 
results suggest that the acto-myosin system mediates displacement of amyloplasts, which under 
normal conditions possibly move along the actin filaments, using myosin as a motor protein, to 
reorient their position following gravistimulation. 
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Oxygen influx shows a gravity-regulated asymmetry in the transition zone (TZ) of root apices on 
ground when root orientation varies from vertical to horizontal. In details, oxygen influx 
increased only on the upper side of TZ, remaining stable on the lower one, since 18 ± 2 sec after 
changing the root position. Considering that the tilting procedure took around 15 s, the first O2 
signal can be hypothesized to appear just few seconds after gravistimulation. This rapid change 
in the oxygen flux into root apices is by far the fastest ever reported plant response to gravity. 
To analyze this phenomenon in a very low gravity situation, an experiment has been set up on a 
parabolic flight, which permits a sequence of normal, hyper- and microgravity conditions. During 
the flight, oxygen flushes in roots of Zea mays seedlings have been constantly monitored by 
selective microelectrodes and a respirometer. A clear and distinct signal in oxygen fluxes has 
been detected only in the apex zone, starting just 2.0 ± 0.5 s after the imposition of 
microgravity conditions, while no significant changes have been monitored neither in normal nor in 
hypergravity conditions. The significance of these results on the nature of the graviperception will 
be discussed. 
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Chemical aspects of two different types of plant leaf movements, the circadian leaf movement 
known as nyctinasty and trap leaf-closure of Dionaea muscipula, will be discussed. 

Nyctinastic leaf movement is induced by the swelling and shrinking of motor cells in the 
pulvinus, joint-like thickening located at the base of the petiole. A flux of potassium ions across 
the plasma membrane of the motor cells is followed by massive water flux, which results in 
swelling or shrinking of these cells. An issue of great interest is the regulation of the opening and 
closing of the potassium channels involved in nyctinastic leaf movement. 

Each of nyctinastic plants of five different genuses so far examined contained a pair of 
factors, one of which induces leaf closure and another induces leaf opening. The relative contents of 
the closing and opening factors changed correlating with the nyctinastic leaf movement. Use of 
fluorescence-labeled and photoaffinity labeled factors revealed that the factors bind to motor 
cells and that the membrane fraction of the pulvini contained two potential receptor proteins 
which can bind to the factor. 

Venus’s flytrap (Dionaea muscipula) is known as representative insectivorous plant. This 
plant traps the insects by its large leaves called trap, and digested them between the traps by 
digestive enzymes. Interestingly, there observed some “memory” in the leaf-closure of Dionaea. 
The rapid closure of the traps requires twice stimuli within thirty seconds on their sensory hairs 
which exist on the internal surface of the trap leaves. Only one stimulus never induces leaf 
closure. This phenomenon suggested that Dionaea memorizes the first stimuli on the sensory 
hair. We found that Dionaea has endogeneous chemical factor which induce the closure of traps 
without stimuli. This plant “memory” can be explained by the stepwise accumulation of 
secreted chemical factor. 
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Synaptotagmins are a family of transmembrane proteins that function as transducers of Ca2+ signaling 
in membrane fusion events. All members of the synaptotagmin gene family span membranes once, 
have short lumenal domains and long cytoplasmic regions containing two C2 domains connected 
by a short linker. There are 16 known vertebrate synaptotagmins. Detailed biochemical and in 
vivo studies of the best characterized isoform, synaptotagmin1 (syt 1), have provided compelling 
evidence that it functions as a calcium sensor for fast neurotransmitter release at synapses. In 
Arabidopsis there are six synaptotagmin-like genes (sytA-F) with unknown functions. In search 
for genes that were essential for salt stress tolerance, we screened a T-DNA population at high 
NaCl concentration. We found that loss-of-function of synaptotagmin A (SytA) in Arabidopsis 
produces hypersensitivity to sodium but only at low Ca2+ concentration. We analyzed the 
phospholipid binding properties of SytA. These studies revealed that only C2A binds phospholipids 
in a Ca2+ dependent manner, while C2B shows phospholipid binding independently of Ca2+. These 
results, combined with SytA localization in the plasma membrane, suggest that Ca2+ dependent 
membrane trafficking mediated by SytA is important for plant survival under abiotic stress conditions.  
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Plasmodesmata (Pd), plasma-membrane-lined channels that connect plant cells, are not static 
organelles, but rather show a high degree of plasticity and can change in a transient manner 
from 'closed' to 'open' to 'dilated'. The dynamic properties of Pd play an important role in 
regulating the direct cell-to-cell transport of molecules between cells, in providing a cell-to-cell 
passageway for plant viruses and in the organization and functioning of symplasmic domains. 
Two different mechanisms are assumed to produce these focused changes in the tunnels. The 
first model suggests that conductivity changes due to alterations in plasmodesmal structure 
motivated by plasmodesmal associated cytoskeleton proteins actin, myosin and centrin. The 
second model suggests that changes in the wall sheath surrounding the Pd, mediated by callose 
(β-1,3-glucan) synthesis and hydrolysis, cause changes to Pd structure that alter its conductivity. 
Recently we have identified the first β-1,3-glucanase Arabidopsis enzyme that is associated to 
the Pd complex, termed AtBG-pap (plasmodesmal associated protein) (Levy et al. 2007). When 
fused to GFP, this previously identified GPI anchored protein localizes to the ER and the plasma 
membrane, where it appears in a punctuate pattern that co-localizes with callose present 
around Pd. In T-DNA insertion mutants that do not transcribe AtBG-pap, GFP cell-to-cell movement 
between epidermal cells is reduced and callose levels around Pd are elevated. 

Many plant β-1,3-glucanases are "Pathogenesis Related" (PR) proteins, and are induced in 
response to microbial pathogen infection. Measuring the RNA levels of AtBG-pap following 
infection with cucumber mosaic virus (CMV) and Pseudomonas syringae pv. tomato showed no 
significant increase of AtBG-pap transcription levels, suggesting  that AtBG-pap is not a PR 
protein and is not involved in virus cell-to-cell spread. 

Physiological measurements of 20 days old AtBG_pap mutant plants suggest that growth 
of these mutants is inhibited. Germination of the mutant seeds is severely delayed, and totally 
inhibited in ~50% of the seeds. AtBG-pap RNA levels were shown to be induced during germination 
just prior to testa and endosperm rupture. These results suggest that callose degradation by 
AtBG-pap at Pd is required for the regulation of germination, possibly by the release of seed 
dormancy and the activation of symplasmic connection between cells. 
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When parasitic Blumeria graminis, the grass powdery mildew fungus, attempts to penetrate into 
barley epidermal cells, the plant reacts by cellular reorganization. The cytoplasm polarizes, the 
filamentous actin cytoskeleton focuses, and the nucleus migrates to the site of attack. 
Consequently dynamic reorganisation of the endomembrane system takes place, and endocytotic 
multivesicular bodies (MVBs) form. MVBs either target the vacuole in a lysosomal-like pathway or 
they are redirected to fuse with the plasma membrane and to release their vesicular cargo into 
the apolast. MVB-based secretion is involved in formation of cell wall appositions in which B. 
graminis is restricted. However, both actin reorganization and MVB formation are also involved 
in compatibility leading to accommodation of fungal feeding structures, haustoria, in intact 
cells. This might indicate corruption of cellular defence mechanisms for generation of the haustorial 
complex. Accordingly, barley RHO-like proteins, which is involved in actin organization, and 
presumably defensive NADPH oxidase are required for successful penetration of B. graminis into 
epidermal cells of barley. 
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Plant disease resistance is the result of the collective activity of separate defence mechanisms. 
We have previously discovered that the syntaxin gene SYP121 (PEN1) in Arabidopsis is required 
for penetration resistance1,2. SYP121 is necessary for vesicle trafficking leading to formation of 
papillae, which are local cell wall appositions functioning as barriers against fungal penetration. 
Based on the use of a functional GFP-SYP121 fusion, we demonstrate that SYP121 in addition to 
its plasma membrane localization, also is found in endosomal compartments involved in polarized 
secretion. Pharmacological analyses have demonstrated the involvement of endocytosis and 
endosomal secretion in the SYP121-dependent penetration resistance. 

The most closely related syntaxin gene, SYP122, is not required for penetration 
resistance. Meanwhile, the phenotype of the syp121 syp122 syntaxin double mutant have shown 
that these genes act as negative regulators of several signalling pathways leading to pathogen 
defence-related programme cell death. The syp121 syp122 plant exhibits a lesion mimic phenotype, 
which we by introducing knock-out mutations have shown partly to be due to an active SA 
signalling pathway3. Introducing knock-out mutations in a number of other well-known defence 
pathways have unravelled that several of these also contribute to the lesion mimic phenotype. 
The fact that several defence pathways are activated in the syntaxin double mutant syp121 
syp122 has allowed us to study genetically to what extend these pathways are parallel. 

Re-mutagenesis of syp121 syp122 has led to isolation of a large number of triple mutants, 
which at varying degree rescues the lesion mimic phenotype. The third mutations have occurred 
in SUPPRESSOR OF SYNTAXIN-RELATED DEATH (SSD) genes. While a number of these have been 
positionally cloned, many of them have been placed in signalling pathways using high through-
put genetics based on examining hundreds of F2 populations of crosses between triple mutants. 
Often combination of two ssd mutations lead to an enhanced suppression of the lesion mimic 
phenotype, indicating that the SSD genes control parallel signalling pathways, each contributing 
to the lesion mimic phenotype of the syp121 syp122 double mutant. In summary, our observations 
have helped us to draw a map of signalling pathways that are active in syp121 syp122. 
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Iron (Fe) is a ubiquitous redox-active element essential to both pathogenic microorganisms and their 
hosts. In the plant immune response, the formation of localized cell wall appositions, the oxidative 
burst and the production of pathogenesis-related proteins are hallmarks of plant defense 
reactions.  Using a wheat-powdery mildew pathosystem, we have shown that Fe is a central 
mediator linking these three phenomena.  Upon powdery mildew attack, Fe in leaf epidermis 
redistributes to the apoplast, which leads to Fe deficiency in the cytosol of attacked cells.  The 
accumulated apoplastic Fe mediates the oxidative burst, which further stimulates Fe efflux and 
intracellular Fe deficiency. H2O2 and Fe deficiency induce expression of defense-related genes while 
suppressing the expression of Fe storage-related genes. Our work identifies Fe as an underlying 
factor regulating cereal defenses, and establishes links between disease-related Fe homeostasis 
in plants and animals. 

Fungal pathogens have evolved at least two pathways for Fe uptake from plant hosts 
regulated by siderophore-assisted Fe mobilization and reductive Fe assimilation systems. To examine 
the relative contribution of the reductive and siderophore pathways of Fe uptake, we created 
mutants disrupted at the ferroxidase gene Fet3 (∆fet3) or the siderophore biosynthetic gene 
SidA (∆sidA) from the head blight pathogen Fusarium graminearum. Targeted disruption of the 
Fet3 gene has no effect on virulence, whereas the SidA gene is an essential virulence attribute in 
the wheat-F. graminearum pathosystem. Together, these data show how pathogenic fungi compete 
with the host for Fe and how the host uses Fe to counteract this threat, providing insights on 
developing novel strategies for plant disease control. 
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The plant action potential (AP) has been studied for more than half a century. The experimental 
system was initially provided by the large charophyte cells, which allowed insertion of multiple 
electrodes and manipulation of cell compartments. The early experiments were modelled on the 
Hodgkin and Huxley (1952) (HH) voltage clamp technique developed for the squid axon. The HH 
analysis identified sodium ion inflow and potassium ion outflow as the as the depolarising and 
repolarising phases, respectively, of the nerve AP. The plant AP was also modelled in terms of 
voltage-gated opposing ion flows. The return to the resting potential difference (PD) was, 
indeed, due to the outflow of potassium ions. However, the depolarising agent was found to be 
the outflow of chloride ions with involvement of the calcium ions in activation of the chloride 
channels (Hope and Findlay, 1964). Later the patch clamp technique characterised the chloride 
ion channels, but the source of the calcium increase in the cytoplasmic space remained unclear 
(Thiel et al., 1993). Further, using tonoplast-free cells, Japanese researchers obtained APs 
without chloride ions in the perfusion medium in the charophyte cells, suggesting that calcium 
could be the depolarising ion under some circumstances (Shimmen and Tazawa, 1980). 

At the turn of the century, the paradigm of the charophyte AP shifted to include several 
chemical reactions, second messenger activated channel and calcium ion liberation from internal 
stores. The threshold voltage pulse mobilizes the second messenger inositol-1,4,5,-triphosphate 
(IP3) from its membrane-bound precursor phosphatidyl inositol 4,5-biphosphate (PIP2). IP3 has to 
reach critical concentration to stimulate calcium concentration rise in the cytoplasm (Biskup et 
all, 1999; Wacke et al. 2003). Many aspects of this new model await further clarification. 

The role of AP in plant movements is well documented in higher plants. The charophytes, 
on the other hand, are a good system to study the involvement of the AP in wound signalling 
(Shimmen, 2002) and turgor regulation (Beilby and Shepherd, 1996; 2006), which will be discussed in 
more detail. 
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Electrical signaling and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus 
flytrap) have been attracting the attention of biophysicist and electrophysiologists since the 
nineteenth century [1,2]. When an insect touches the trigger hairs of the Venus flytrap, 
mechanosensors on these trigger hairs generate an electrical signal that acts as an action 
potential which activate the motor cells. Six trigger hairs protruding from the upper leaf 
epidermis act as mechanosensors, with three of the trigger hairs located in the center of each 
half of the lamina. The exact mechanism of Venus flytrap closure is still unknown. Moreover, a 
traditionally used slow data acquisition systems cannot capture plant electrical signals with 
frequencies higher than half of the sampling frequency. Using an ultra-fast data acquisition 
system with measurements in real time, we found that action potentials in the Venus flytrap 
have an average speed of 10 m/s with a duration time of about 1.5 ms and are fast enough to 
induce the closure of the leaves by the motor cells. A few minutes after closing of the Venus 
flytrap, electrical signaling was also detected in the lower part of the leaf of the Venus flytrap 
in the form of graded potentials with amplitudes of 20 mV or less. In terms of electrophysiology, 
Venus flytrap responses can be represented as the following sequence: stimulus perception, 
signal transmission, and induction of response. We discovered that the electrical impulse 
between a midrib and a lobe allows the Venus flytrap leaf to close by activating motor cells 
without mechanical stimulation of trigger hairs. The average closing time of Venus flytraps by 
electrical stimulation of motor cells is 0.3 s, which is the same as mechanically induced closing 
by a small piece of a gelatin or cotton thread. Our results demonstrate that electrical 
stimulation can be used to study mechanisms of fast activity in motor cells of the plant kingdom. 
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An early response of etiolated (dark-grown) Arabidopsis to light is a transient depolarization.  It 
has been proposed (Lewis & Spalding, 1998) that this depolarization is due to activation of a Cl- 
channel in a ligand-gated channel family, and blocking channel function prevents the inhibition 
of growth that is part of the greening response.  Based on previous experiments with Chara that 
showed a chloride channel activated by acetylcholine (ACh) (Gong & Bisson, 2002), we explored 
the possibility that the light-stimulated Arabidopsis channel is similarly activated by ACh.  Since 
the Chara experiments indicated that the binding site for ACh is cytoplasmic, we microinjected 
ACh into the cytoplasm of hypocotyl cells of etiolated plants, and determined the effect on the 
light-induced depolarization. We found, instead of activation, that microinjection of ACh inhibited 
the depolarization due to light. Because nicotine potentiated the effect of ACh in Chara, we 
microinjected nicotine with ACh in Arabidopsis. Instead of potentiating the effect, nicotine restored 
the depolarization, although it significantly delayed it. To test the physiological significance of 
these effects, we treated etiolated Arabidopsis plants with ACh with and without nicotine. 
Treatment decreased growth in the dark somewhat, but eliminated the inhibitory effect of light. In 
fact, plants treated with ACh consistently grew longer after brief exposure to light than those in 
constant darkness. We explore models for the action of ACh on the greening process. 
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Vegetative growth and the transition to reproductive growth involve continuous communication 
between all plant organ systems and their response to the networking of internal and external 
signals. Time-lapse photography is clear evidence of such adaptative behaviour to environmental 
signals resulting in a precise pattern of rhythmic phenomena. Rhythmic integration of the whole 
plant involves modulation of turgor pressure via stretch-activated ion channels and concomitant 
changes in membrane potentials, potentially leading to action and/or variation potentials. 

As evident on the cellular level, induction of polarity, the basis for changes in rates and planes 
of cell division, involves latent changes in patterning of plasmamembrane electrochemistry, 
which eventually becomes stabilised by structural polarity involving cytoskeleton elements. It is 
proposed that the dynamic electrochemical activity is continuously integrating internal and 
external signalling for developmental adaptations in a changing environment. 
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Dicot leaves have a laminate structure of four cell layers: the two epidermal layers surrounding 
the palisade and spongy mesophyll tissues. There has been persisting uncertainty as to which of 
these layers is driving the expansion of leaf blades. To solve this problem we made use of the 
Argenteum mutant of pea, where viable epidermal layers can be easily removed from the 
leaflets. Removal of the main vein or just one epidermis did not alter the growth rate of excised 
leaflet strips, but removal of the second epidermis caused a rapid increase in the growth rate. 
Long-term experiments confirmed that the light-response of isolated mesophyll strips excedes 
that of the complete-leaflet strips by 50 %, while isolated epidermis strips expand only when 
pulled by an external force. Both isolated mesophyll and epidermal tissues undergo rapid 
elongation in response to a change in solution pH from 6.0 to 4.5. Previous experiments 
comparing the ability of isolated epidermis and mesophyll layers to pump protons in response to 
light found the response of the mesophyll to be larger (Stahlberg & VanVolkenburgh 1999). These 
results support the idea that the mesophyll layers drive and control the rate of leaf expansion. 
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Biochemical studies have demonstrated that sucrose uptake kinetics into sink cells consist of 
multiple components collectively characterized by a bi-phasic curve. Whereas the hyperbolic 
phase at low external sugar concentration is believed to represent a high-affinity, membrane-
bound, carrier-mediated component, the linear non-saturable phase at higher concentrations denotes 
facilitated diffusion presumably mediated by a sucrose binding protein. Previous observations 
that FPE in celery parenchyma was only induced at high external mannitol prompted us to re-examine 
the possible role of FPE and membrane-carrier transport within both phases of the characteristic 
concentration uptake curve. At low external concentration (5 mM), sucrose uptake into turnip 
(Brassica campestris) hypocotyl discs was inhibited by the sucrose carrier inhibitor phloridzin (2 mM) 
but unaffected by the endocytic inhibitor latrunculin-B (10 μM). When sucrose concentration was 
increased to 100 mM, transport was significantly reduced by both phloridzin and latrunculin-B. 
Uptake of the endocytic marker Alexa-488 was strongly inhibited by latrunculin-B at both 
external sucrose concentrations with no effect noted in the presence of phloridzin. Analyses of 
the data and of Alexa-488/sucrose ‘specific activity’ revealed that the characteristic linear 
phase of sucrose uptake concentration curves is largely mediated by fluid phase endocytosis. 
Time-lapse photography using confocal laser scanning microscopy captured the rapid fusion of a 
~5 μm vesicle with the vacuole supporting earlier suggestions that most of the endocytic uptake 
occurs through a clathrin-independent micropinosome system. In other photographs, the inclusion of 
multivesicular bodies within the vacuole was evident. The presence of multivesicular bodies 
(containing fluorescent vesicles) strongly suggest the existence of a retrograde vesicle transport 
system from the vacuole capable of reconciling vacuolar volume and constituting the energy-
dependent phase that concentrate solutes within. 
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Cytokinins affect plant growth and development by stimulating cell division and differentiation. 
Modulation of flux of cytokinins from roots to shoots via xylem flow in response to environmental 
signals has been repeatedly reported. The concentration of cytokinins in apoplast can be potentially 
modulated by extracellular cytokinin metabolism. We found the cytokinin oxidase/dehydrogenase 
(CKX) activity in xylem sap of oat (Avena sativa L.) plants. The enzyme exhibited pH optimum at 
8.5 and its activity was associated with glycosylated protein. Since the pH of root-sourced xylem 
sap is much lower (6.1) the activity of the CKX leaving the roots is suppressed protecting the co-
transported cytokinins from degradation. The potential role of CKX in control of the cytokinin 
concentration in xylem sap in response to environmental signals was tested by the exposure of 
12 d old plants for 48 h to nutrient solutions differing in NO3

- concentration (16-1000 µM). The 
flux of the root-sourced CKX activity was increased with the increasing NO3

- supply up to 7-fold 
correlating well with the increasing flux of cytokinins [trans-zeatin riboside, trans-zeatin and N6-
(2-isopentenyl)adenine]. The flux of cis-isomers of zeatin was, with exception of cis-zeatin O-glucoside, 
not affected by the exogenous NO3

- indicating different regulation of biosynthesis of trans- and 
cis-zeatins by nitrate 
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The role of volatiles in plant-to-plant communication 
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Plant volatiles have long been known to mediate many important interactions between plants 
and insects, but their importance in interactions among plants has been much debated. We discuss 
two recent projects dealing with volatile mediated plant-to-plant communication. The first 
demonstrates that seedlings of the parasitic dodder plant Cuscuta pentagona use volatile cues to 
locate host plants and to distinguish between more and less preferred hosts. Several individual 
compounds present in volatile blend of the preferred host tomato (Lycopersicon esculentum) are 
shown to be attractive to C. pentagona seedlings, while one compound present in the non-host 
wheat (Triticum aestivum) is shown to be repellent. The second project shows that volatiles released 
by herbivore-wounded leaves of hybrid poplar (Populus deltoides x nigra) prime defenses in adjacent 
leaves on the same plant that have little or no vascular connection to the wounded leaves. 
Undamaged leaves exposed to volatiles from wounded leaves on the same stem had elevated 
defensive responses to feeding by gypsy moth larvae (Lymantria dispar) compared to leaves that 
did not receive volatiles. While previous research has focused on signaling between plants, self-
signaling via volatiles is consistent with the short distances over which plant response to airborne 
cues has been observed to occur, suggesting that within-plant signaling may greater ecological 
significance than previously realized.  
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Allelopathy phenomenon is defined as the influence of one plant on another through chemicals 
(allelochemicals) released into the environment. The action of allelochemicals in target plant is 
diverse and affects a large number of biochemical reactions resulting in the modifications of 
variety physiological processes. Sunflower (Helianthus annuus L.) actively influences the growth 
of surrounding plants due to its strong allelopathic potential. We investigated mode of action of 
sunflower allelochemicals during germination of mustard (Sinapis alba L.) seeds. Inhibition of 
germination was associated with alterations in reserve (lipids, proteins) mobilization and energy 
(ATP) generation in the catabolic phase of germination (Kupidlowska et al. 2006). Additionally, 
sunflower allelopathic compounds induced oxidative stress manifested as enlarged production 
and accumulation of reactive oxygen species (ROS) (Oracz et al. 2007). It correlated well with loss of 
membrane integrity (Bogatek et al. 2006). Therefore we suggested that in allelopathy stress ROS 
(H2O2) may act as signaling molecules leading to disturbances in the balance of phytohormones 
crucial for seed germination. ABA concentration in seeds increased after exposition to sunflower 
allelochemicals, in the contrast, ethylene emission was strongly repressed (Gniazdowska et al. 
2007). Low ethylene concentration, resulting from inhibition of key enzymes activities of ethylene 
biosynthesis may enhance seed sensitivity to ABA. The alteration in phytohormones level leads to 
decreasing metabolic activity of the embryo and blocking seed germination as well as growth of 
young seedlings. The putative relationship between ROS and phytohormones in allelopathy interaction 
will be discussed. 
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Abscisic acid (ABA) is not only synthesized in leaves, but also in roots and it is conventionally 
accepted that root-sourced ABA plays a key role upon water deficit, triggering stomatal closure 
in the leaves. Here, we used the ABA-deficient mutant notabilis (not) in Lycopersicon esculentum, 
its isogenic cultivar Lukullus (Luk) and a naturally desiccation-resistant wild relative L. pennellii 
(pen) to study the relative importance of leaf and root-derived ABA on stomatal closure. We 
conducted a series of graftings with these genotypes in all possible shoot/rootstock combinations 
and then imposed water stress on the plants. Measurements of stomatal conductance, transpiration 
and water potential were performed. Thesuccess of grafts was minimal when not was the scion 
or pen was the rootstock. In graftings involving a not shoot, stomatal conductance and transpiration 
were reduced during water stress and the recovery period if pen or Luk was used as rootstock 
rather than not itself. Conversely, low stomatal conductance was also observed in pen even 
when the rootstock was not. The not/not graftings attained the permanent wilt point in 5 days 
whereas not/pen survived without irrigation for 21 days. These results suggest that the genotype 
of the shoot determines stomatal activity under normal irrigation and that under dehydration 
and the subsequentrecovery the control is given by a root-derived substance, which appears to 
be in a higher dose in L. pennellii. This opens interesting perspectives for the basic and applied 
aspects of water stress resistance in plants. 
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Although epidemiological studies in men are still inconclusive, it is well established that aluminium 
(Al), in available form, is extremely toxic to all organisms. The neurotoxic effects in animals and 
men are well documented. High tissue Al concentrations have been found in patients with 
dialytic encephalopathy, amyotrophic lateral sclerosis or Alzheimer disease. In plants, Al mainly 
affects root growth and development. A stunted root system with reduced capacity to explore 
the soil for water and nutrients is the main visible symptom of the Al toxicity syndrome. Besides 
these obvious differences in the outcome of Al toxicity, there are striking similarities in the 
mechanisms of Al toxicity in both plant and animals, including men. This presentation will give a 
comprehensive overview on the basic mechanisms by which Al may cause neurotoxicity in both 
animals and plants. At the present stage of knowledge, it is getting clear that specific cells are 
the primary targets of Al toxicity in both humans and plants: astrocytes in the animal or human 
brain and transition zone cells in roots, the “brain-like cells” (Baluška et al. 2004, Illeš et al. 
2006) of plants. Special attention will be paid to Al interactions with the plasma membrane, to 
Al-induced oxidative stress, and to the glutamate metabolism at these primary sites of toxicity. 
Perception and transmission of the Al signal and its consequences for adaptative root growth in 
plants will be discussed.  
 
REFERENCES 
 
Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Biologia 59: 7-19 
Illeš P, Schlicht M, Pavlovkin J, Lichtscheidl I, Baluška F, Ovecka M (2006) J Exp Bot 57: 4201-

4213 
 

 69 

mailto:charlotte.poschenrieder@uab.es


Common cellular mechanisms of endosymbiotic root infection 

Ton Timmers1, Mireille Chabaud1, Andrea Genre2, Paola Bonfante2, Joëlle Fournier1, Björn 
Sieberer1, David Barker1 

1 Lab. of Plant-Microbe Interactions, UMR INRA-CNRS, 31326 Castanet Tolosan Cedex, France 
2 Dept. of Plant Biology, University of Turin and IPP-CNR, Turin, Italy 

Email: Ton.Timmers@toulouse.inra.fr 

The mutual beneficial relationships between plants and arbuscular mycorrhizal (AM) fungi and 
nitrogen-fixing bacteria known as rhizobia, are highly important both from an agricultural and 
ecological point of view. Plants exchange photosynthate products for phosphate in the first and 
nitrate in the latter, and provide a safe niche for their microbial partner. The AM association is 
wide-spread, while the rhizobial symbiosis is limited to leguminous plants. During both 
interactions the microbes invade internal root tissues developing specific intracellular symbiotic 
structures called arbuscules in the AM association and symbiosomes in nodulation. In legumes, 
the entry of both AM and rhizobial symbionts appears to be controlled by a common signal 
transduction pathway concerning a small number of plant genes (DMI1, -2, -3 and their 
homologues). The initial entry into root tissue is intracellular involving the formation of a host 
membrane/cell wall interface which physically separates the microbe from the host cell 
cytoplasm. During nodulation, invasion takes place through curled root hairs and a subsequently 
formed plant-derived structure, the so-called infection thread. For the passage through root 
cortical cells the infection thread makes use of a predefined way consisting of cytoplasmic 
bridges named pre-infection threads. AM fungi penetrate directly root epidermal cell surfaces 
and pass through a recently identified structure named the pre-penetration apparatus (Genre et 
al. 2005). Thus, in both symbioses the plant appears to be the principal partner in control of 
initial infection and infection progression. Comparative ongoing studies on both endosymbiotic 
associations in our laboratory will be presented in relation to the strategies developed by plants 
to control beneficial microbe entry into host tissues. 
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Piriformospora indica is a wide-host root-colonizing fungus which allows the plants to grow 
under extreme physical and nutrient-limiting conditions. The fungus promotes growth and seed 
production and confers resistance against biotic and abiotic stresses (1). We study the molecular 
basis of the interaction between P. indica and the model plant Arabidopsis thaliana (cf. 2, 3) 
Based on mutant screens, expression profiling, proteomics as well as biochemical techniques, we 
could identify plant components, which are required for this beneficial plant/microbe 
interaction. Components involved in recognition, early signalling events and maintenance of the 
symbiotic interaction will be discussed. In a second screen, we identified Arabidopsis mutants in 
which growth and development is inhibited rather than promoted by the fungus. Apparently, 
only a few components in plants need to be manipulated to convert a beneficial into a 
pathogenic interaction. 
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When insects feed on plants, they introduce oral secretions (OS) into the plant tissue. These OS 
contain several molecules that are known to be involved in the induction of plant defence 
reactions and subsequent processes. OS was analyzed with regard to their membrane activities 
using the black lipid membrane (BLM) technique. Transmembrane ion fluxes were generated by 
OS of eight different lepidopteran larvae, which all displayed comparable ion channel-forming 
properties in artificial membranes. These currents were characterized by long lasting opening 
times and high conductivities. The OS from Spodoptera exigua exhibited channels with a 
preference of cations over anions. OS also induced a transient increase of the cytosolic calcium 
concentration in soybean cells, which was determined by the aequorin technique.  
Other compounds of the OS, fatty acid- amino acid conjugates (FACs), also interfere with BLMs. 
But unlike OS, they do not form long lasting channels.  
Since ion fluxes and depolarization are early responses upon insect feeding, OS-derived 
components may directly be involved and interact with the plant membranes.  
The focus of ongoing work lies on the purification and subsequent identification of the 
substance(s) responsible for the channel-formation.  
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As a prerequisite for colonisation of the mainland, plants developed lipophilic biopolymers 
forming the interface between the plant and the surrounding air and soil environment. Leaf 
surfaces are covered by cuticles and waxes, stem and root interfaces are formed by suberized 
cell walls. As main function lipophilic interfaces form efficient transport barriers protecting 
land-living plants from uncontrolled water loss and at the same time they protect living plant 
tissue from infection by pathogens. Various aspects of our ongoing research related to the 
structure, biosynthesis and function of cutinized and suberized plant/environment interfaces 
will be presented and discussed. 
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Endocytic uptake and traffic of sucrose linked to both starch and cellulose biosynthesis are 
processes specifically triggered by sucrose that require the synthesis de novo of proteins 
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We have recently established that an important pool of sucrose linked to starch biosynthesis in 
heterotrophic cells is taken up by endocytosis (Etxeberria et al. 2005 Plant Cell Physiol. 46, 474-
481; Baroja-Fernandez et al. 2006 Plant Cell Physiol. 47, 447-456). Whether this mechanism is 
also involved in the sucrose-cellulose conversion process was investigated by comparing the 
rates of cellulose accumulation in sycamore cells cultured in the presence or absence of the 
endocytic inhibitors wortmannin-A, 2-4(4-morpholynyl-)8-phenyl-4H-1 benzopyran-4-1 (LY294002) 
and latrunculin B. These analyses revealed that sucrose-cellulose conversion involves two 
phases, the second of which being 35% sensitive to the effect of endocytic inhibitors. Whether 
endocytic uptake, traffic and metabolism of sucrose requires the de novo synthesis of proteins 
was investigated by comparing the rates of accumulation of the endocytic marker lucifer yellow, 
sucrose and starch in sycamore cells in the presence or absence of the transcriptional inhibitor 
cordycepine and the translational elongation inhibitor cycloheximide. These analyses revealed 
that the two compounds exerted a strong inhibitory effect on the accumulation of lucifer yellow, 
sucrose and starch. The stimulatory effect of sucrose in the endocytic uptake of external solutes 
could not be replaced by the non-metabolizable sucrose analogues palatinose and turanose. The 
overall results (a) provide a first indication that the endocytic uptake of sucrose linked to both 
starch and cellulose biosynthesis requires de novo synthesis of proteins and (b) further 
strengthen that the endocytic uptake of external solutes is very specifically triggered by sucrose. 
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morphogenesis 

Radek Bezvoda1, Martin Potocký2,3, Olga Valentová3, Viktor Žárský1,2 

1 Department of Plant Physiology, Charles University, Vinicna 5, 12844 Prague 2, Czech Republic 
2 Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 265, 
165 02 Prague 6, Czech Republic 
3 Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technická 5, 
166 28 Prague 6, Czech Republic  

Email: bezvoda@natur.cuni.cz 

Support from LC06034 project of Czech Ministry of Education is acknowledged.  

Phospholipase D (PLD) cleaves structural phospholipids, namely phosphatidylcholine, producing 
second messenger phosphatidic acid (PA). PLD and PA play crucial role in many signal transduction 
pathways across eukaryotic kingdom. In animal and yeast cells, PLD was implicated in the 
regulation of vesicular trafficking and dynamics of actin cytoskeleton. In plants, PLD research is 
mainly focused on its role in responses to various stresses and involvement of PLD/PA in the 
mechanisms controlling cell polarity is only partially characterised. Here we present data 
showing that multiple PLDs are required for polar growth of tobacco pollen tubes. We cloned 
five partial PLD cDNAs from tobacco pollen tubes and BY2 cells covering all major PLD 
subfamilies. RT-PCR analysis suggested differential expression of studied cDNAs. In order to 
functionally characterize distinct PLD isoforms, we used gene specific knock-down mediated by 
antisense oligonucleotides. The suppression of NtPLDbeta1 and NtPLDdelta lead to lower growth 
rates, whereas exogenously applied PA restored normal growth, thus confirming the importance 
of PLD signaling for polar growth of pollen tube and raising the question of downstream targets 
of PA. Visualization of actin cytoskeleton indicated the involvement of PLD/PA signalling in 
cytoskeletal dynamics. 
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Microtubules (MTs) nucleated independent of defined microtubule organizing centres such as 
centrosomes or spindle pole bodies have been only recently shown to play an important role in 
designing cytoskeleton architecture. γ-Tubulin is required for MT nucleation at defined 
microtubule organizing centres but its role in nucleation of noncentrosomal MTs is much less 
understood. In higher plants where all somatic and gametic cells are acentrosomal, there are 
several microtubular arrays organized during cell cycle progression from undefined dispersed 
sites. Well characterized γ-tubulin ring complexes that are essential for centrosomal MT 
nucleation in animal cells have not yet been identified in plants. Rather we found the presence 
of heterogeneous protein complexes of γ-tubulin in cytoplasm, in association with membranes 
and MTs. Large γ-tubulin complexes were active in microtubule nucleation. To further analyze 
the role of γ-tubulin, we conditionally downregulated γ-tubulin by inducible expression of RNAi 
constructs in Arabidopsis thaliana. After induction of RNAi γ-tubulin was gradually depleted 
from all known cellular locations including the microsomal and the microtubular fraction. We 
found that γ-tubulin as a component of cortical nucleation templates guides cortical MTs. The 
regrowth of MTs from perinuclear membrane rich region after drug depolymerization was 
delayed in cells with reduced γ-tubulin levels. Similarly, immunodepletion of γ-tubulin from A. 
thaliana extracts strongly compromised the in vitro polymerization of MTs. Almost complete 
RNAi depletion of γ-tubulin led to the absence of microtubules. In summary, we showed that γ-
tubulinu is essential for MTs nucleation from dispersed sites in acentrosomal plant cells. Further 
characterization of γ-tubulin forms and their protein interactions is under progress. 
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Glutamate and ethanol deplete F-actin and inhibit vesicle recycling at “plant synapses” in 
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L-Glutamate is a well-known neurotransmitter in brain and it has also dramatic impacts on plant 
root apices (Filleur et al. 2005, Walch-Liu et al. 2006). Specifically, the primary root apex is 
sensitive to L-Glutamate, which does not affect apices of young lateral root primordia (Walch-
Liu et al. 2006). Plants also express glutamate-like receptor family proteins (GLRs) gated by 
glutamate and glycine (Dubos et al. 2003, Gilliham et al. 2006). Glutamate gated GLRs emerge 
to act in plants, similarly like in animals, as calcium channels (Demidchik et al. 2004, Kang et al. 
2006, Qi et al. 2006) involved in the response of plants to sensoric stimuli and to stress from the 
environment (Kim et al. 2001, Sivaguru et al. 2003, Kang et al. 2004, Meyerhoff et al. 2005). 
Genetic evidence suggest, that GLR are essential for the organization and functioning of primary 
root apices (Li et al. 2006). Here we have analyzed effects of glutamate on the actin cytoskeleton 
and vesicle trafficking in primary root apices of Arabidopsis and maize. Our data reveal, that the 
most sensitive subcellular domains are the cell end-poles, which represent what we have defined 
as plant synapses (Baluška et al. 2005). Especially in the transition zone (Verbelen et al. 2006), 
F-actin gets depleted and vesicle trafficking inhibited at plant synapses in primary root apices. 
Surprisingly, similar effects have been scored also with ethanol at concentrations even lower as 
those (Offenhäuser et al. 2006) which has been recently reported to affect F-actin at mouse 
brain synapses (Offenhäuser et al. 2006, Sordella and Van Aelst 2006). In the future, we will 
study the behavior and performance of roots challenged with exogenous glutamate and ethanol. 
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We found that inducible RNAi depletion of γ-tubulin led to serious distortions of development in 
A. thaliana seedlings. Cells with decreased levels of γ-tubulin could progress through mitosis, 
but late mitotic events and cytokinesis were strongly affected. Particularly, we observed that 
polar distribution of γ-tubulin during late mitosis was disturbed and the phragmoplast formation 
failed. In contrast to the control cells where anaphase spindles were rearranged into the 
phragmoplast, long anaphase spindles persisted between separated nuclei in RNAi cells. The cell 
plate formation sites were often misaligned. These discrepancies in late mitosis and cytokinesis 
often resulted in bi- or multi-nuclear cells and disruption of regular cell files and some 
morphogenic changes were observed. Strict developmental pattern of stomata was disrupted and 
clusters of two to four stomata were observed in RNAi expressing plants with reduced γ-tubulin 
levels. In addition to the stomata clustering, the cytokinetic defects of guard cells were found 
when γ-tubulin was severely depleted. Dorsoventral polarity during leaf development was 
disturbed in seedlings with reduced γ-tubulin levels. Ectopic root hairs formation was observed 
in cells with randomized microtubules, anisotropic growth of root hairs was disturbed, formation 
of two growth axes was often observed. We suggest that some functions of γ-tubulin that are 
important for cytokinesis, cell specification and polar growth might be microtubule independent 
and require further analysis. 
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Modern varieties of corn (Zea mays L.) developing erect leaves have been selected for their 
ability to maintain production in dense planting. We showed earlier that on the whole plant 
level, and at the cellular and molecular levels, the modern hybrid 3394 is less sensitive to 
exogenous auxin than two older hybrids 307 and 3306. Others confirmed our results since there 
is a decline in response to auxin over the decades of varieties release. We also showed that the 
levels of endogenous free IAA in 307 and 3394 were similar. 

The modern hybrid 3394 growing in the dark was also less sensitive to exogenous auxin 
than other two older hybrids 3366 and 317. Also, excised mesocotyl segments of 3394 were less 
responsive to NAA than segments of the older varieties. An additional modern hybrid, Benecia 
developing erect leaves, showed less sensitivity to exogenous auxin than older hybrids PR39A37 
and PR39G83 with less erect leaves for leaf angle development and expression of ABP4 (auxin-
binding protein 4). Interestingly, the three hybrids did not differ in the level of endogenous free 
IAA in etiolated mesocotyls. 

We published recently that growth of 3394 seedlings is less inhibited than growth of older 
hybrids by red (R) and far-red light (FR). Here we found that 3394 mesocotyl is also less 
responsive than all the tested older hybrids to the inhibitory effect of blue light (BL). In contrast 
to R or FR, BL in our experimental conditions promoted elongation of coleoptile, and the 
stimulatory effect was much stronger in 3394 than in the older varieties. Interestingly, under BL, 
coleoptile elongation of the modern variety 3394 was inhibited by NAA significantly more than 
growth of coleoptile in 307.  

To understand more the role of maize ABPs in growth and development, we analyzed 
maize single mutants abp1 and abp4, and the double mutant abp1abp4. Mutations in ABP1 and 
ABP4 genes caused changes in development of leaf angle. In comparison with the corresponding 
wild-type (WT), abp1 and abp4 developed more and less erect leaves, respectively. 
Interestingly, etiolated WT, abp1, and abp4 seedlings exhibited similar responses to exogenous 
auxin for coleptile, mesocotyl, and root growth. However, mesocotyls of double mutant 
abp1abp4 were distinctly less sensitive to the inhibitory effect of exogenous auxin. Analysis of 
endogenous auxin in etiolated mesocotyls revealed that all the abp mutants contain significantly 
greater levels of free IAA.  

Our results support the existence of interaction between auxin and light in regulation of 
growth and development of young corn seedlings. The results further indicate that ABP1 and 
ABP4 are involved in mesocotyl growth and leaf angle development, but also suggest ABP 
redundancy in maize. Finally, our data support the hypothesis that modern corn hybrids developing 
erect leaves are less responsive to exogenous auxin. Specific function of blue light in development 
of maize seedlings is discussed. 
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We previously reported that spontaneous mutant 7B-1 in tomato is resistant to osmotic and salt 
stress in seed germination specifically under blue light (BL). We showed that in tomato wild-type 
(WT), BL strongly inhibits seed germination, but essentially less than in 7B-1. Relative to the WT, 
7B-1 seedlings develop longer hypocotyl in WL and BL. The long-term objective of our work is to 
determine whether 7B-1 gene is involved in blue light signaling, and what is the role of 7B-1 
product in plant tolerance to stresses. Here we report that NPPB, an anion-channel blocker, can 
intensify the inhibitory effect of BL on germination in tomato, when applied on WT seeds 
cultured under BL. Interestingly, germination of 7B-1 seeds in BL is almost completely resistant 
to NPPB. Aquaporins could represent a prerequisite for strategies against osmotic stress. Like 
NPPB, HgCl2, an inhibitor of aquaporin, under BL powerfully inhibits seed germination in WT, but 
not in 7B-1. Differently from 7B-1, mutations cry1-1 and cry1-2 do not result in the resistance of 
seed germination to mannitol, and do not alter sensitivity of seed germination to the inhibitory 
effect of NPPB or HgCl2. On the other hand, defects in two Arabidopsis genes coding for anion 
channels result in increased sensitivity of seed germination to mannitol, specifically under BL. 
Our results suggest that functional anion-channels and/or aquaporins may be involved in ability 
of seeds to tolerate osmotic stress. Data also indicate that BL is involved in the process. 7B-1 
mutant seems to have some traits of plants less responsive to biotic stress. We found that in the 
dark and BL hypocotyls of the 7B-1 mutant are less sensitive than WT to the inhibitory effect of 
Pseudomonas syringae phytotoxin coronatine added to the culture medium. Interestingly, the 
resistance was associated with the fact that in contrast to the WT plants, level of endogenous 
salicylic acid (SA) and jasmonic acid (JA) in 7B-1 hypocotyls could not be altered by BL. Our 
results suggest that BL plays a role in plant tolerance to abiotic stresses, and that anion channels 
and/or aquaporins may be involved in the process. Pleiotropic effect of the mutation suggests 
that 7B-1 gene product can function as an upstream element in light signaling pathway(s). We 
hypothesize that specifically in BL, 7B-1 mutation enhances activity of anion and/or water 
channels, which can help the mutant seeds to tolerate osmotic stress. Analysis of recently 
obtained cDNA microarray data is in progress, and cloning of 7B-1 gene will follow. 
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The classical neurotransmitter acetylcholine (ACh) is well-known for propagating action potentials 
across neuronal synapses (Phillis 2005). At the neuromuscular synapse, the entire process of signal 
transmission, including vesicular release ofACh, its diffusion across the synaptic cleft, reversible 
binding with nicotinic ACh receptor, and finally the enzymatic hydrolysis of ACh by acetylcholinesterase 
(AChE) takes only a few milliseconds. In plant tissues, ACh is an abundant molecule, which increases 
its endogenous concentrations under stress situation (Tretyn 1991). Plants express AChE, which 
is inhibited by neostigmine bromide, a specific inhibitor of the animal AChE (Sagane et al. 2005). 
Older studies already revealed that exogenous ACh stimulates plant cell elongation (Evans 1972). 
Moreover, endogenous ACh levels are sensitive to light and oscillate (Tretyn and Tretyn 1990). It 
has also been shown, that ACh-hydrolyzing activity in maize is essential for the root graviresponse 
(Momonoki 1997, Momonoki et al. 2000). Here we report, that experimental manipulations of 
ACh levels exerts specific actions on root apices of Arabidopsis and maize. The F-actin-enriched 
cross-walls in the root transition zone, which we have previously defined as “plant synapses” 
(Baluška et al. 2005), emerge as the most sensitive intracellular domains. Excess of ACh, induced 
either by addition of exogenous ACh or by inhibition of the AChE, has a dramatic impact on spatial 
control of cell division planes, F-actin assembly, endocytosis and vesicle recycling activities, as 
well as on the overall architecture of the plant synapse.  
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An important role of electrical signals in short-term long-distance (systemic) plant responses to 
local wounding has been recently established (Koziolek et al. 2004, Hlaváčková et al. 2006). 
Simultaneously, a rapid action of plant hormones (abscisic and jasmonic acids) in systemic 
tobacco responses upon local stress has been shown (Hlaváčová et al. 2006, Hlaváčková and Nauš 
2007). However, little is known about the interactions of these signals (electrical and chemical) 
and about the mechanisms whereby they mediate the systemic responses. 

We examined short-term (up to 1 h) local and systemic electrical responses of wild-type 
(WT) and abscisic acid (ABA)-deficient tomato mutant (sitiens) plants to local burning (12s) of an 
upper leaf. A lower endogenous concentration of ABA (about one third of WT) in leaves located 
below the burned one was detected in untreated and also burned sitiens plants compared to the 
WT tomato. The electrical recordings obtained from the wounded leaf and three others situated 
below the burned one (in basipetal direction) revealed significant differences between both 
variants. Firstly, the amplitude of electrical signal of WT (50-60 mV) plants was twice as high as 
that of sitiens (20-35 mV) plants. Secondly, the way of electrical signal propagation seemed to 
be influenced by ABA. While in the WT plants the amplitude and propagating velocity of 
electrical signal decreased with increasing distance from the site of burning (indicating the 
variation potential, VP), it did not hold for sitiens plants. Although the 5th leaf in the sitiens 
plants was closer (27 cm) to the burned site (6th leaf), the VP wave was delayed as compared to 
that of the more distant 4th (29 cm) and 3rd (31 cm) leaves. Taken into account the angle position 
of measured leaves on sitiens tomato plants, the VP wave propagated faster along the leaf trace 
of burned leaf (vascular bundles coming from the burned leaf) down the stem in tomato sitiens 
plants. 

Comparing amplitudes and propagation velocities of electrical potential changes in WT 
and sitiens mutant tomato plants, our results suggest a participation of ABA in the electrical 
signal generation and propagation in tomato plants after local wounding. Thus, an interaction of 
both, electrical and chemical signals, in rapid systemic plant stress responses is plausible.   
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Many studies have shown that plants possess numerous mechanisms which enable them to 
perceive, transduce and respond to a variety of environmental signals. Light signals are amongst 
the most important environmental factors that regulate plant growth and development. The gol 
of this study was to determine the interaction of light-induced changes in electlical potential of 
pumpkin plants with the action potentials evoked by electrical and thermal stimuli. The 
experiments were carried out with 14-16 day-old pumpkin plants (Cucurbita pepo L.) grown in 
Hoagland`s medium under incandescent and luminescent light. The measurements of electrical 
potential difference were done with a non-invasive, surface-contact electrodes. The electrical 
reactions of pumpkin were induced by electrical (square current pulses), thermal (burning) and 
light (400 W m-2) stimuli. The action potential (AP) generated by electrical pulses in the lower 
part of the hypocotyl was transmitted and propagated with decrement to cotyledons and leaves. 
These voltage transient changes had a shape of single peak and fulfilled all-or-none law. The 
action potential triggered by thermal stimulus (local burning of cotyledons) differed in terms of 
amplitude and duration as compared to electrically induced AP. The irradiation of the plants 
with white light caused an electrical response of a specific nature which did not resemble the 
APs induced by electrical and thermal stimuli. The light-induced response comprised two phases: 
a relatively fast hyperpolarization followed by a slower depolarization. The potential difference 
measured with surface electrodes changed with an identical time course but opposite polarity as 
compared to intracellular recordings. The amplitude and time course of depolarization phase 
depended on the duration of irradiation. When pumpkin plants were stimulated simultaneously 
with both light and electrical or thermal stimuli an additive effect was observed. The results are 
discussed taking into account the ionic basis of both light-induced electrical response and action 
potential triggered by electrical or thermal stimuli.  
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Plant cells are continuously exposed to changing osmotic conditions, dependent on the versatile 
water accessibility. Long-term osmotic stress evokes activation of adaptive mechanisms, leading 
to changes in e.g. cellular metabolism. As a consequence, the cell is able to survive the stress. 
However, biochemical adaptations are not the only ones. Another group constitute mechanical 
adaptations, and the continuum between cell wall, plasma membrane and actin cytoskeleton is 
the major player here. The wall-protoplast interactions are particularly important for 
mechanical stabilization of the cells subjected to changing environmental conditions. They 
prevent either bursting of the protoplast under iso- and hypotonic conditions, or collapsing of 
the plasmolysing protoplast in hypertonic environment. The cytoskeleton plays an important role 
at the protoplast side in controlling cell shape and mediating intracellular signalling. Both 
microtubules and actin filaments might be anchored at the plasma membrane and further in the 
surrounding cell walls. This anchoring could be crucial for the proper functioning of cytoskeletal 
networks. 

The very special case of the cell’s response to stress is the adaptation to such conditions 
that are lethal to non-adapted cells. We have adapted the suspension-cultured tobacco BY-2 
cells to extreme osmotic stress conditions evoked by high levels of ionic (NaCl, KCl) and nonionic 
(mannitol, sorbitol, polyethylene glycol) agents. The concentrations of these agents were chosen 
in such a way as to cause similar changes of the water potential. Nonionic and ionic osmotica act 
in different manner and result in specific responses of adapted cells. Ionic agents increase 
adhesive properties of the cells, and formation of cell aggregates. On the other hand, nonionic 
agents stimulate strictly positioned cell divisions and thus induce formation of cell files. 
Surprisingly, analyses of actin and tubulin cytoskeletons in adapted cells and non-adapted, 
unstressed, cells reveal no significant changes. However, tobacco BY-2 suspension cells exposed 
to short-term osmotic stress could cope with it in a cytoskeleton-dependent manner. Such cells 
reveal disruption of fine networks of cortical microfilaments and microtubules, and, most 
probably, formation of thicker cables. Changes in the actin cytoskeleton occur at membrane 
zones detached from cell walls – protoplast’s regions especially subjected to mechanical stress. 
It seems that upon prolonged exposure to osmotic stress conditions adaptive, alterations in cell 
wall composition will occur. This will probably change anchoring of the cytoskeleton in the walls 
and further modify functioning of the whole cell wall-plasma membrane-cytoskeleton continuum. In 
that way, cell’s mechanical balance restoration will be ensured and, in consequence, cell will be 
able to resist osmotic pressure and divide in severe stress conditions. 
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Biophotons are ultraweak light emissions from biochemical reactions in a living body. Elicitor-
responsive photon emissions (ERPE) increase in suspension-cultured rice (Oryza sativa L.) cells 
when elicited by N-acetylchitooligosaccharide. Biochemical analyses were undertaken to clarify 
the emission mechanism of ERPE. Exogenously applied phosphatidic acid (PA), the second 
messenger leading to the reactive oxygen species (ROS) generation in the signal transduction of 
disease response, raised photon emissions in rice cells. Comparisons of photon emissions from PA 
and ERPE regarding time courses, spectral compositions, and the inhibition ratios of several 
inhibitors, as well as a loss- and gain-of-function assay using the protein synthesis inhibitor 
cycloheximide and PA, showed the possibility that ERPE were generated through PA, an 
intermediate of phospholipid signaling. The effects of protein phosphorylation (K252a) and the 
Ca2+ signaling inhibitors (EGTA and LaCl3), caused ERPE to decrease. It is clear that ERPE are 
regulated by Ca2+ signaling and protein phosphorylation. ERPE were suppressed when cells were 
pretreated with ROS-generating inhibitors: pyrocatechol-3,5-disulfonic acid disodium salt (Tiron); 
diphenylene iodonium (DPI); and salicylhydroxamic acid (SHAM). Conversely, exogenously applied 
ROS (superoxide and hydrogen peroxide) was able to induce photon emissions. ERPE are closely 
associated with the ROS-generating system. In addition, we found that the pattern of ERPE is 
almost identical to that of hydrogen peroxide generation. ERPE were inhibited with the 
pretreatment of NO scavenger, cPTIO. Interestingly, exogenously applied NO did not induce 
biophotons, but suppressed ERPE dose-dependently when applied together with N-acetylchito-
oligosaccharide. It appears that NO plays a role of controlling ERPE through interacting with the 
ROS-generating system. 
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Our earlier studies show that in response to lead tip growing Funaria hygrometrica protonemata 
formed cell wall thickenings (CWT) localized at the apex. The thickenings were built mainly from 
pectins able to bind Pb2+ and callose. In fact, they accumulated large amounts of this metal 
(Krzeslowska et al. in press). It seemed to be probable that such reaction was the result of 
alterations in actin cytoskeleton caused by lead. We supposed moreover that it might be a 
typical one for tip growing cells. This hypothesis was verified in root hairs of GFP- FABD2 
Arabidopsis thaliana. 

GFP- FABD2 A. thaliana incubated 10 days in vitro on MS medium, were treated with 16 
μM Pb by 24h, applied as an aqueous solution of PbCl2. Control material was incubated for the 
same amount of time on distilled water. Afterwards, in vivo studies of the actin filaments (MFs) 
and cell wall (CW) structure and composition in the control and in lead treated root hairs, were 
carried out. Callose was detected by aniline blue and pectins by ruthenium red. All observations 
were carried out in fluorescence microscope Axiovert 200M and laser scanning confocal 
microscope LSM 510 (Carl Zeiss, Jena, Germany). 

Treated with lead root hairs often formed cell wall thickenings (CWT), localized mainly 
at the tip of the cell. Preliminary studies of their composition showed that they contained first 
of all pectins and callose. Microfilament bundles in growing control root hair run parallel to the 
onger axis of the cell and they do not reach the tip. Opposite to this, in lead treated material 
MFs bundles were much more thick than in control and reached the tip of the root hair which 
often was swollen. In this region MFs array was not parallel to the longer axis of the cell and 
were running in various directions. In root hairs where CWT appeared the number of MF bundles 
was lower. Some of them were running just under the CWT, often parallel to its edges. Other MF 
bundles were arrayed in various directions. If the CWT occurred in subapical or lateral cell walls, 
one or a few MF bundles, running more or less parallel to the longer axis of the cell in this 
region, curved and run directly to CWT. 

Tip growing cells showed similar response to lead: swollen tips and formation of CWT. CW 
formation during cell elongation requires both proper transport of vesicles from GA to growing 
tip and recycling of cell wall compounds via endocytotic pathway. Both processes are strongly 
dependent on actin cytoskeleton (Ovecka et al. 2005). The results of our studies shown, however, 
that in root hairs of A. thaliana treated with lead the array of MFs is markedly altered, 
especially in the tip region of the cell. Thus we conclude that its disturbation was probably one 
of the main reason of CWT formation in lead treated plant cells. Furthermore, disturbations of 
cell wall – cytoskeleton continuum strongly suggests some alteration(s) in signalisation within 
stressed plant cells. 
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Exocyst, a large protein complex of 8 subunits, has been shown to be required for proper post-
Golgi vesicle targeting at the plasma membrane. Its orthologs can be found in most of 
eukaryotes. In Arabidopsis, defects of exocyst subunits Sec8 and Exo70 show a drastic phenotype, 
most visible at pollen-tubes and root hair defects. Post-Golgi secretion is required for both 
polarized growth and secretion. Here we show a new phenotype of sec8 mutants affecting seed 
coat mucilage. Seed coat is missing in plants lacking Sec8 protein and is significantly smaller 
with truncated Sec8. These data support an idea, that seed coat mucilage can be used as a 
marker of exocytosis in Arabidopsis thaliana. 
 
REFERENCES 
Cole et al. (2005) Plant Physiol 138: 2005-2018 
Synek et al. (2006) Plant J 46: 54-72 
 
 
 

 88 

mailto:ikulich@gmail.com


Structural and functional modification of WMC proteins caused by nitric oxide 

Agnieszka Łapa1, Przemysław Wojtaszek1,2 

1. Institute of Bioorganic Chemistry, Polish Academy of Sciences; Z. Noskowskiego 12/14, 61 704 
Poznań, POLAND 
2. Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University; Międzychodzka 
5, 60-371, Poznań, POLAND 

Email: agnieszkalapa@wp.pl 

This research is supported by the Ministry of Science and Higher Education grant PBZ-KBN-
110/P04/2004 to P.W.  
 
In recent years, nitric oxide was reported to be involved in many physiological processes in 
plants - in fact it is regarded as an important signaling molecule in the plant world (1). NO can 
modulate the functioning of proteins, either through binding to transition metal ions (such as 
Fe+2 in heme groups in guanylate cyclase (2)) or via modification of amino acid residues. Among 
the latter modifications, the key roles play S-nitrosylation of cysteine thiols and nitration of 
thyrosine residues. Both modifications can affect the structure and the activity of proteins.As a 
consequence, S-nitrosylation can be treated as an nitric oxide-dependent signaling modification, 
involved in the mechanism for redox-based regulation of signal transduction pathway (3). There 
were two aims of this work. First, to identify proteins of the cell wall-plasma membrane -
cytoskeleton continuum (WMC) potentially modified by NO. Second, to investigate the effects 
exerted by various NO donors and modulators of NO activity on the functioning of WMC 
continuum as a whole and the actin cytoskeleton as part of it. Nitric oxide was localized in 
Arabidopsis thaliana (in suspension-cultured cells and seedlings) of utilizing DAF-2-FM diacetate 
(4). For the analyses of protein modifications, MALDI TOF mass spectrometry was used. The 
proteins were identified using specific antibodies and western blot analysis. These studies were 
complemented with the microscopic studies of the organization of the actin cytoskeleton in 
roots of Arabidopsis thaliana seedlings and in vivo immunolocalization of S-nitrosotiols (SNO) and 
nitrotyrosines in cell suspension culture. 
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In growing plant cells, cell wall deposition is a highly organized process that is completed when 
cell expansion comes to an end. The formation of additional callose is assumed to be a general 
defense reaction which can be elicited either by physical stress, e.g. mechanical perturbations 
(Foissner et al. 1996), or by organic and anorganic chemical agents. It requires the plasma 
membrane bound enzyme 1,3-ß-glucan synthase which polymerizes the callose from glucose 
within the cytoplasm, wherefore normally the participation of organelles is ruled out. And 
actually there are only few cases where the involvement of the Golgi apparatus is discussed as 
well (reviewed by Kauss 1996).  

We induced abnormal callose synthesis in differentiated onion inner epidermal cells by 
mechanical stress (puncturing of the cell by a micro-needle) and by incubating onion cells in 
solutions of copper sulphate (Kartusch 2003), and we stimulated aberrant cell wall thickening 
and branching in growing root hairs of Triticum aestivum. We describe changes of the 
cytoskeleton and of the motility of the organelles and the nucleus. 
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Exploratory root movements closely resemble behaviour of lower animals (Darwin 1880) due to their 
co-ordinated bendings in two different zones: the transition and elongation region (Wolverton et 
al. 2000). This allows invasively growing root apices to be highly flexible in avoiding obstacles as well 
as dangerous soil patches due to limited amount of water or increased amounts of toxic metals. 
Roots of parasitic plants actively detect and grow towards root apices of their host plants and to 
colonize them using haustorial hairs which penetrate into the transition zone of pray roots 
(Tomilov et al. 2005). Moreover, roots growing down along gravity vector and hitting mechanical 
obstacle start “to probe the shape“ of this mechanical obstacle and use the first possibility to 
grow down the gravity vector (Massa and Gilroy 2003). Very similar behavior can be documented 
by growing roots up of a slope when ethylene signalling proved to be essential to accomplish 
worm-like crowling of roots searching for weak sites in the substratum (Hahn et al. 2006). In order to 
understand this complex animal-like behavior of roots, we have performed a series of experiments 
using both intact and decapped maize (Zea mays, cv. Careca) roots. Scored behaviour of roots 
implicate gravity sensing in decapped roots (Mancuso et al. 2006) and document that root bendings 
in the transition zone and elongation region are highly coordinated to perform the worm-like 
crawling movements. Root cap removing is perturbing this coordinated behavior of two bending 
domains, suggesting that the intact root apex is essential for this coordinated root behavior. 
Removing of the root cap even promotes the root growth (see also Mancuso et al. 2006) but these 
roots grow straight and are impaired in their abilities to grow down the gravity vector which is an 
inherent part of their crawling movement, allowing them to analyze the substrate properties as 
well as to avoid dangerous environments. In future, we will use this new experimental system to 
challenge growing roots, both of wild-type as well as relevant mutant lines, treated with drugs and 
neurobiologically active substances to analyze their roles in animal-like behaviour of roots. 
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All processes of living organisms examined with suitable and sufficiently sensitive measuring 
techniques generate electric fields that must be regarded as one of the most universal 
properties of living organisms. Many studies have demonstrated that bioelectrochemical signals 
exist in plants at all levels of evolution (action potentials or excitation waves). AP are possible 
mechanisms for intercellular and intracellular communication in the presence of environment 
changes. Plants respond to environmental stimuli and excitation can be dispersed throughout the 
entire plant, travelling from the top of the stem to the root and from the root to the top of the 
stem. Though excitation waves appear strongly after stimulation, a basic electrical activity can 
be found in the whole plant. The theoretical description of the electrical activity and the 
propagating model through single cells is still not understood. Simultaneous multisite recording 
is a prerequisite to understand the nature of electrical phenomena. For extracellular recording 
from electrogenic cells pursuing these goals, substrate integrated, planar microelectrode arrays 
(MEAs) have been developed to monitor spikes and local field potentials. A typical setup for MEA 
recording is based on metal microelectrodes fabricated on a planar chip, discrete-element 
preamplifiers located close to the MEA device and a multi-wire cable that conducts the pre-
amplified analog signals to a data acquisition card. Here we report for the first time recordings 
of single-unit spike activity with MEAs in acute slice of Zea mays L. root apex. Field potentials were 
recorded simultaneously from 60 electrodes (30 μm diameter) with high spatial and temporal 
resolution. This new technique allowed us to map functionally discrete regions of the root and to 
observe the space-time relationships and the spontaneous, synchronous electrical activity of the 
root apex. The nature of spike shapes has been studied on each MEA electrodes (200 μm 
interelectrode spacing). We conclude that extracellular recording of independent single-unit spike 
activity with MEAs is indeed suitable to monitor electrical network activity in root apex, making 
MEAs an exceptionally useful tool for the assessment of fast network dynamics in plants. 
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Most leguminous plants close their leaves in the evening, as if to sleep, and open them in the 
morning according to the circadian rhythm controlled by a biological clock. Nyctinastic plants 
have a pair of endogenous bioactive chemical factors that control leaf movement. Potassium β-
D-glucopyranosyl-12- hydroxyjasmonate and cis-p-coumaroylagmatine were isolated as leaf-
closing factor (LCF) and leaf-opening factor (LOF) of leguminous plants bolonging to genus Albizzia, 
respectively. Our studies focus on the mechanism of leaf movement using these chemical factors 
as molecular probes. 

We developed molecular probes consisting of modified leaf-movement factors of Albizzia 
plants in order to identify their target cells. We conducted a double fluorescence-labeling study 
using FITC-labeled LCF and rhodamine-labeled LOF. Interestingly, both of the probes bound to 
the same motor cells called extensor cells in the pulvini. Therefore, the motor cell with a set of 
receptors for leaf-movement factors is located on the extensor side of pulvini. Since extensor 
cells are difined as cells that increase their turgor during opening, and decrease their turgor 
during closing, the leaf-movement factor must facilitate a decrease or increase in the turgor of 
extensor cells. In Albizzia plants, the trigger for leaf-movement might be related to the change 
in turgor of extrensor cells. 

We also synthesized a pair of enantiomers of FITC-labeled LCF, and used them for 
fluorescence studies. Comparing the results, FITC-labeled LCF of natural stereochemistry bound 
to the extensor cells of Albizzia plants, whereas its enantiomer could not bind to it. The results 
demonstrated the involvement of a receptor in the extensor cell, which recognizes the 
stereochemistry of jasmonate-type LOF. 
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It is well known that the direction of growth of certain plant cells or organs can be modified by 
an applied electric field. This phenomenon, known as electrotropism has been reported in fungi 
(McGillavray and Gow, 1986) and algae (Brower and Giddings, 1980) as well as in the pollen tubes 
(Marsh and Beams, 1945), roots (Ishikawa and Evans 1990; Wolverton et al. 2000), and shoots 
(Schrank 1959) of higher plants. 

The correlation between electrical changes and gravitropic curvature suggests the 
possibility that the curvature of roots in an electric field results from electrical changes within 
the root that mimic those caused by gravistimulation. This possibility is strengthened by reports 
that root electrotropism is suppressed by inhibitors of auxin transport (Moore et al. 1987). We 
examined the effects of electrotropism in solutions of low electrolyte concentration using 
primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across 
which an electric field was applied, the roots curved rapidly and strongly toward the positive 
electrode (anode). The strength of the electrotropic response increased and the latent period 
decreased with increasing field strength. At a field strength of 1.5 volts per centimetre the 
latent period was few minutes and we were able to analyse changes in oxygen fluxes outside the 
root thanks to the vibrating probe. The experimental measurement of ion or gaseous molecules 
fluxes in roots is fundamental when discriminating normal physiological function from abnormal 
or stressed states. We took measures in three basic anatomical parts of root apex: meristematic 
zone, transition zone, and elongation zone (Verbelen et al. 2006).  

The goals of the research described in this poster are (a) to determine the changes of 
oxygen fluxes in different zones of the root related to the electrotropic curvature in maize 
roots, investigating the early phase of the electrotropic response, from the apply of the current 
to the visible bending, and (b) to determine the role and the effects of pharmacological 
manipulation in the electrotropic response and their changes on oxygen fluxes. 
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The great potential of nanoparticles as delivery systems to be directed to specific targets in 
living beings has been first explored for medical uses. In agriculture, nanotechnology 
applications can also have a broad range of uses in particular to tackle infections with 
nanosystems tagged to pesticides or other substances for efficient and local treatments, thus 
reducing the dose of chemicals released to the environment.  
In order to explore the benefits of nanotechnology applications in agriculture, the first level is to 
achieve the penetration, movement and targeting of the nanoparticles through the plant at 
specific sites. In this context, the precise localization of the particles in the plant tissues and in 
the different subcellular compartments is pivotal. We have performed preliminary assays with 
carbon coated magnetic nanoparticles in plants, the magnetic core allowing allocation of the 
nanoparticles in the site of interest (affected tissues) using small magnets. In this work, a 
number of tools for the detection and analysis of magnetic nanoparticles introduced into plants 
have been evaluated, by using different techniques and levels of observation, ranging from 
conventional light microscopy to confocal and electron microscopy. 
We have inoculated in vitro growing plants with a ferrofluid composed of carbon-coated 
magnetic nanoparticles. Tissue samples were then collected, fixed, cut and observed with 
different processing techniques to detect the presence of nanoparticles at the above-mentioned 
microscopy levels. These techniques include conventional light microscopy, fluorescence 
microscopy, confocal scanning laser microscopy and electron microscopy, combined with 
different fixation and/or embedding processes. The results showed that the nanoparticles can be 
visualised by reflection on a confocal microscope; inferred as dark areas in an autofluorescent 
background (either natural or induced), and as a punctuate pattern on the light microscope, 
further identified as clusters of nanoparticles on the electron microscope due to their iron core. 
Our first data showed the presence of nanoparticles both in the extracellular space and within 
some cells. Further work is needed to evaluate how the nanoparticles penetrate and are 
transported within the plants, and the mechanism(s) of intracellular internalisation to explore 
the potential of nanoparticles as smart treatment delivery systems in plants.  
 
González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, 
Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A. Nanoparticles as smart treatment delivery 
systems in plants: first report of penetration inside living plants and assessment of different 
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Subtilisin-like proteases are serine endopeptidases with catalytic triad of aspartate, histidine 
and serine. Eucaryotic subtilases belong to two families of subtilisin-like proteases: kexins and 
pyrolysins, based on amino acid sequence similarity. Kexins, called proprotein convertases, are 
well known in mammals to play pivotal role in generation of bioactive molecules: polypeptide 
hormones, growth and neurotrophic factors, receptors, adhesion molecules and other proteases 
through highly specific proteolytic cleavage. In recent years, a growing body of evidence 
indicates that regulation of many aspects of plants growth and development depends not only on 
classical phytohormones but also on peptide signaling. Although many of these peptides and 
their precursor are being identified, there is still no direct evidence for generating bioactive 
peptide by plant protease. To gain knowledge about possible roles of subtilases in the regulation 
of plant growth and development, we have chosen two subtilase genes At5g19660 and At5g59810 
from among 56 in Arabidopsis thaliana genome. For functional analysis of At5g59810, we 
decided to utilize the insertion mutants as well as transgenic plants overexpressing this gene 
under control of CaMV promoter, and a line with promoter::GUS construct. Phenotypical 
changes, immunolocalization and GUS expression analysis will be presented. On the basis of 
these evidences, we suggest that At5g59810 could be an enzyme involved in the generation of 
signal peptides regulating plant development. Second subtilisin At5g19660 is an ortholog of 
S1P/SKI-1, a conservative animal type of subtilases. These are transmembrane proteins located 
in endoplasmic reticulum/Golgi apparatus. In animals, they catalyze proteolysis of 
transmembrane precursors of transcription factors, and enable release of active molecules from 
the endomembrane system. In this communication, bioinformatic data of At5g19660 protein and 
their potential substrates will be presented. Additionally, we will show evidence for the 
developmental role of this protease based on the analysis of Arabidopsis thaliana insertion 
mutants.  
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The cytoskeleton in plant cells plays an important role in controlling cell shape and mediating 
intracellular signalling. However, almost nothing is known about the reactions of cytoskeletal 
elements to heat stress, which represents one of the major environmental challenges for plants. 
Here we show that living epidermal root cells of Arabidopsis thaliana could cope with short-term 
heat shock stress showing disruption and subsequent recovery of microtubules and actin 
microfilaments in a time-dependent manner. Time-lapse imaging revealed a very dynamic 
behaviour of both cytoskeletal elements including transient depolymerization/disassembly upon 
heat shock (40-41°C) followed by full recovery at room temperature (20°C) within 1-3 hours. 
Reaction of microtubules, but not actin filaments, to heat shock was dependent on cell type and 
developmental stage. On the other hand, recovery of actin filaments but not microtubules from 
heat shock stress was dependent on the same parameters. The relevance of this adaptive 
cytoskeletal behaviour to intracellular signalling is discussed.  
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The C18- apocarotenoid D’orenone, a precursor of the trisporic acid signalling molecules acting as 
pheromones in soil fungi (zygomycetes, Schachtschabel et al. 2007), exerts extremely rapid 
effects on roots of higher plants, ranging from the monocot Zea mays up to the dicot Arabidopsis 
thaliana. Most sensitive are tip-growing root hairs, which stop their tip growth within a few 
minutes of exposure to D’orenone. The actin cytoskeleton is rapidly remodelled, involving F-
actin depolymerization in root hairs. We have shown this in vivo using the transgenic GFP-ABD2 
actin-reporter line of Arabidopsis (Voigt et al. 2005) and in situ using a polyclonal maize actin 
antibody on Steedman's wax sections taken from maize root apices (Baluška et al. 1997). 
D’orenone rapidly depolymerizes F-actin and disintegrates the vesicle-rich ‘clear zone’ at the 
very tip of growing roots hairs. Vacuoles protrude up to the very tips of the root hairs as growth 
is ceasing. Labelling of Arabidopsis roots with the cell permeable Ca2+ dye Fluo3-AM and the O2

.- 
sensitive dye NBT revealed, that a few minutes after the D’orenone treatment the tip-focused 
ROS and cytoplasmic Ca2+-gradient disappear. 

Intriguingly, D’orenone exposed roots display an activation of the auxin response reporter 
DR5rev::GFP specifically in the root tip. A similar phenomenon was monitored for the 
phosphatidylinositol-3-OH kinase inhibitor wortmannin (Jaillais et al. 2006). Like wortmannin, 
D’orenone treatment affects both PIN2 abundance and subcellular location. Nearly the complete 
PIN2–GFP signal, which is normally observed in epidermal cells and cells of the lateral root cap in 
root tips, vanished and the PIN2–GFP signal started to be expressed strongly in the transition 
zone cells. PIN2 polarity was still maintained at the plasma membrane, but PIN2–GFP also 
accumulated within vesicular compartments and at the tonoplast of vacuoles. Double treatment 
with D’orenone and the general secretion inhibitor brefeldin A (BFA) revealed that PIN2-GFP-
positive BFA-induced compartments start to appear only after long treatment periods of more 
than 2 h instead of usual 30 minutes. 

Importantly, external addition of auxin rescues all aspects of the D´orenone induced 
phenotype, i.e. on the levels of root hair formation, root growth, and root graviresponse. 
External auxin also makes the roots more resistant to additionally applied D’orenone. All this 
implicates that D’orenone is a very active biological molecule possibly affecting either the PIN2-
dependent auxin efflux or auxin signalling; relevant for both the auxin dependent root hair tip-
growth (Lee and Cho 2006) and root growth (Blilou et al. 2005). D’orenone might also function as 
an important component of the myxomycete – plant communication. Finally, the most attractive 
scenario would be that endogenous D’orenone-like substances exist in plants and act as a new, 
hitherto unknown, class of plant hormones. 
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Polar auxin transport (PAT) is one of the fundamental processes in the life of higher plants. The 
cell-to-cell active transport of auxin molecules underlies their uneven and complex spatio-
temporal distribution within plant body. The proper function of PAT is crucial for many, often 
very diverse plant developmental processes and/or situations, and it delimits basic processes 
such as embryogenesis, polarity maintenance and growth responses to environment. PAT in 
higher plants is the process with very complex regulation. When studying PAT, plant models 
representing individual stages in the course of plant phylogeny may help to assess early 
development of individual traits in auxin transport. The understanding of the evolution of PAT 
may contribute to decipher various strategies in its regulation in higher plants and - in general - 
it would give a better insight into the basis of the whole process. 

From physical-chemical reasons, the efflux of auxin from cells is the crucial step in PAT. 
PIN proteins from Arabidopsis thaliana were shown to play a rate-limiting role in catalyzing the 
auxin efflux from cells and their asymmetrical/polar cellular localization determines the 
direction of cell-to-cell auxin flow. Therefore, we have collected known sequences coding for 
the homologues of auxin efflux carriers of PIN family and resulting data were related to 
available information on the distribution of PAT, apical and polarized growth and other PAT-
related characteristics during plant evolution. We have also outlined the next possible steps in 
data-mining strategies related to studies of co-evolution of PINs together with various forms of 
auxin transport, and some possible implications of PAT for land plant evolution. 
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In sensitive sejsmonastic and carnivorous plants, action potential is an essential factor that 
evokes rapid movement of plant organ e.g. leaf or flay-trap. In ordinary plants, APs can also 
participate in the regulation of plant pollination, fertilization, respiration, photosynthesis, 
growth and gene expression. Recently it was shown that in plants the glutamate receptor is 
involved in electrical response and light and growth signalling. Here, the effect of glutamate on 
membrane potential, stem movement and growth was studied in three-week-old sunflowers. 
Extracellular and intracellular electrical potential measurements were carried out. Time-lapse 
photography from a top and side view camera was used for stem movement and growth study. 
Two drops of millimolar glutamate solution were injected into the lowest part of the sunflower 
stem. Injection of glutamate solution resulted in a series of APs lasting several dozens of minutes. 
The evoked APs propagated from the injection site along the stem and were able to enter the 
petiole. Some were initiated in the upper part of the stem and propagated downwards. The AP 
series were often accompanied by variation potential. Local application of glutamate resulted in 
a decreased rate of circumnutation, which reached its minimum in the third hour after the 
glutamate application. The preliminary experiments with application of the time-lapse photography 
technique did not show any significant growth inhibition following glutamate injection. The overall 
results provide a first indication that in higher plants the injection of glutamate solution evokes 
propagating series of APs and inhibits the endogenous stem movement. 
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Boron (B) is essential microelement in all vascular plants. Among others, it plays an important 
role in cell wall synthesis. The physiological role of B in plants is depicted as that of a transducer 
in several processes initiated by light, gravity, and some plant hormones. Information concerning 
the role of boron in plant growth and development during photomorphogenesis is very poor. It 
has been previously observed (Rölfe et al. unpublished results)that under red (RL), but not in 
blue light (BL) boron can stimulate hypocotyl growth, and that the element effect also depends 
on light intensity. Here, we studied effects of elevated boron concentrations on Arabidopsis 
growth and development in in vitro conditions with respect to light quality signal. Analysis of 
mutants with defects in light perception could suggest interaction between boron and light 
signaling pathways during plant growth and development. In this genetic approach we also 
investigated boron and light effects on growth of mutants with defects in genes involved in 
synthesis of plant cell wall components, especially cellulose. For the analyses, we used 
photomorphogenic mutants cry1 (hy4), cry2, and hy2, and cell wall mutants rsw1-1 and rsw1-10. 
We found that hypocotyl elongation in all Arabidopsis ecotypes tested was stimulated by boron 
at concentrations from 2 to 3 mM H3BO3, but inhibited at higher boron concentrations. We 
revealed that hypocotyl of cry1 mutant was not essentially stimulated by boron in BL or RL, and 
even not in dark. The data suggest that functional photoreceptor CRY1 is positively involved in 
boron-induced stimulation of hypocotyl growth. In contrast, cry2 plants grown in the dark, or 
under BL or RL showed WT responses to boron supplemented in the culture medium. Under 
normal conditions, etiolated rsw1-10 seedlings develop very short hypocotyl. We found that in 
rsw1-10 mutant H3BO3 highly stimulates hypocotyl elongation even at the concentration (10mM) 
extremely toxic for control plants. The stimulation was associated with strong reduction of BOR1 
expression in mutant hypocotyl. The positive effect of boron on hypocotyl growth was most 
intensive in dark, but it was also essential in RL and BL, i.e. light quality only reduces growth 
amplitude. In contrast to rsw1-10, mutation rsw1-1 did not affect hypocotyl responsiveness to 
high boron concentrations. Results of our experiments led to several important conclusions. 
First, we revealed that boron at relatively high concentrations could stimulate hypocotyl 
elongation not only in red light, but also in blue light and in the dark. Other results suggest that 
in RL and BL, functional photoreceptors in Arabidopsis can maintain high capacity of boron to 
stimulate hypocotyl elongation. Analyses of mutants with defects in cell wall synthesis revealed 
that mutation rsw1-10 results in reduction in primary root and hypocotyl sensitivity to toxic 
effects of high boron concentrations. Differential expression of BOR1 in the mutant and wild-
type plants supports the existence of mechanism by which plants can tolerate toxic effects of 
high boron concentrations on plant growth 
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The immature pollen grain, at the stage of vacuolate microspore can be switched, upon stress, 
from their normal pollen development programme to the embryogenesis pathway. Pollen 
embryogenesis is of much interest for basic studies and for applied research, being the best and 
more used tool to obtain double haploids. This process occurs by the reprogramming of 
microspores upon an abiotic stress treatment, followed by embryogenesis. The effectiveness of 
pollen cultures varies among species and essays. On occasions, many of the cells do not progress 
after the stress treatment. This could be due to a different response after stress, cell death 
events or different signal transduction pathways. The programmed cell death (PCD) pathways 
are not well defined in plants. In barley (Hordeum vulgare L.), an agronomically interesting 
species, pollen embryogenesis is induced by a starvation treatment in isolated microspore 
cultures. Different stages of pollen embryogenesis cultures were analyzed: during and after the 
stress treatment. Lines of in vitro suspension cells in barley were also developed as a 
convenient/simpler model system to evaluate the cell response to the inductive treatment and 
the occurrence of PCD events. The same conditions of the microspore cultures were reproduced 
on the suspension cells and various PCD markers were evaluated. A study on the characterization 
of PCD has been undertaken. Ultrastructural, cytochemical and inmunocytochemical analysis 
showed structural changes during stress treatment in the cultures similar to those established in 
animal cell apoptosis. After 24 hour of stress treatment different cytoplasmic and nuclear 
changes were found in the microspores. Results showed an increase of the number of vacuoles 
during this starvation treatment and a segregation of the cytoplasm after longer treatments. 
DAPI (fluorocrome specific of DNA) staining of the cultures showed disorganized nuclei with 
small fluorescent inclusions, similar to the apoptotics bodies in animal cells. The apoptotic 
features found in the stress-treated in vitro systems were compared with another stress-induced 
PCD system of plant cycling cells (1, 2) and with the developmental PCD process of tapetal cells, 
a male germ-derived cell line. In these systems, cytoplasmic release of the cytochrome C, DNA 
fragmentation, chromatin condensation, RNP segregation and nuclear lobulation were observed. 
Active cleaved-caspase 3 antigen was detected by Western blot, immunofluorescence and 
immunogold labelling in the cytoplasm of the treated cells and at specific developmental stages 
in the tapetum. Enzimatic activity of caspases was detected. Cleaved-caspase 3-like protein has 
been also localized by inmunofluorescence and immunogold labelling during stress treatment in 
pollen embryogenesis. All of these changes were not found when microspores and cell 
suspensions were put in nutrient medium. These results during pollen embryogenesis pathway 
are indicating a defined PCD assopciated with this developmental process. The knowledge of this 
process would allow us to influence it with drug treatments to increase the survival of the 
cultures in the early stages and the efficiency of the system in double-haploid production.  
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Sequence analysis of various animal and plant genomes revealed the presence of synaptotagmin 
genes in all animals and land plants, but there is no evidence of synaptotagmin genes in 
unicellular organisms or those with simple forms of multicellularity. In the Arabidopsis genome 
we find six members, SytA to SytF, which belong to this protein family. They show the same domain 
pattern like their animal counterparts. They possess a N-terminal transmembrane sequence, 
which is followed by a linker of different length and two distinct C2 domains, C2A and C2B. 
Here, we show the ubiquitous expression of SytA in Arabidopsis and its localization via transient 
transformation of tobacco leaves and stable transformation of Arabidopsis seedlings in distinct 
cortical ER domains localized at plasma membrane – cell wall adhesion sites. Furthermore, a T-DNA 
SytA loss-of-function mutant shows response to salt stress through inhibited root growth and aberrant 
growth of root hairs. These findings suggest possible role(s) of SytA in vesicle- and calcium-mediated 
salt stress tolerance.  
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The blue light signal is one of the most important environmental signals for plants. It causes 
phototropism of plant organs, stomatal opening, and chloroplast movements. In the last 
decades, several members of blue light receptors have been discovered in plants. Phototropin1, 
the essential photoreceptor of the blue light mediated phototropism, has been considered as an 
important factor in almost all kinds of blue light responses. In our previous studies (in 
preparation), we showed that the blue light initiates endocytotic translocation of PHOT1. The 
level (speed and rate) of the internalization of PHOT1 can reflect the intensity of blue light 
signals. In this study, using the PIN2::GFP artificial protein, dynamic natures of both styryl dye 
FM4-64 and PIN2 have been studied under darkness and controlled blue light illuminations. Blue 
light signals increased the rate of FM4-64 internalization into cytoplasm, changed the localization of 
PIN2::GFP from vacuole to the plasma membrane, and increased the trapping of both components 
within Brefeldin A-induced endosomal compartments. We conclude that the blue light signals 
controls the localization of putative auxin exporter PIN2, and affects homeostasis of the plasma 
membrane via endocytosis and vesicle recycling. Endocytosis and the endocytic network of plant 
cells may play roles in the blue light signal transduction.  
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Phototropin 1 (phot1) is a photoreceptor for phototropism, chloroplast movement, stomatal 
opening, leaf expansion, and likely solar tracking in response to blue light. Following earlier 
work with PHOT1::GFP (Sakamoto and Briggs 2002), we investigated the pattern of cellular and 
subcellular localization of phot1 in etiolated seedlings of Arabidopsis thalinana. The Phot1::GFP 
fusion protein is expressed strongly in the abaxial tissues of the cotyledons and in the elongating 
regions of the hypocotyl. It is moderately expressed in the shoot/root transition zone and the 
root near the apex. The plasma membranes of mesophyll cells near the colyledon margin appear 
labeled uniformly except for strongly labeled cell plate-like structures. The pattern of labeling 
of individual cell types varies with cell type and developmental stage. Label is undetectable in 
the root epidermis, root cap, and root apical meristem. Blue-light treatment causes PHOT1::GFP, 
initially relatively evenly distributed at the plasma membrane, to become reorganized into a 
distinct mosaic with strongly labeled punctate areas and other areas completely devoid of label, 
a phenomenon best observed in cortical cells in the hypocotyl elongation region. Concomitant with 
or following this reorganization, PHOT1::GFP moves into the cytoplasm in all cell types investigated. 
It disappears from the cytoplasm after several hours in darkness. Neither its appearance in the 
cytoplasm nor its eventual disappearance in darkness is prevented by the translation inhibitor 
cycloheximide, although the latter process is retarded. We hypothesize that this relocalization 
modulates blue light-activated signal transduction.   
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